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Abstract Nonlinear reaction-diffusion systems which are often employed in mathemat-
ical modeling in developmental biology are usually highly stiff in both diffusion and
reaction terms. Moreover, they are typically considered on multidimensional complex geo-
metrical domains because of complex shapes of embryos. We overcome these computa-
tional challenges by combining discontinuous Galerkin (DG) finite element methods with
Strang type symmetrical operator splitting technique, on triangular meshes. This allows us to
avoid directly solving a coupled nonlinear system, as is necessary with the standard implicit
schemes. Numerical solutions of two reaction-diffusion systems, the well-studied Schnaken-
berg model, which has been applied to several problems in developmental biology, and a new
biologically based system for skeletal pattern formation in the vertebrate limb, are presented
to demonstrate effects of various domain geometries on the resulting biological patterns.

Keywords Discontinuous Galerkin finite element methods · Reaction-diffusion equations ·
Operator splitting · Triangular meshes · Complex geometry · Developmental biology

1 Introduction

Mathematical simulation of systems in developmental biology has given rise to a variety
of models which account for spatial-temporal patterning phenomena. Many of these mathe-
matical models are reaction-diffusion systems which have the general form

∂u

∂t
= D∇2u + F(u), (1)
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where u ∈ Rp represent concentrations of a group of biochemical molecules (p is the num-
ber of PDEs in the system and it can be 1, 2, 3, etc.), D ∈ Rp×p is the diffusion constant
matrix, ∇2u is the Laplacian associated with the diffusion of the molecule whose concen-
tration is u, and F(u) describes the biochemical reactions. Examples include Turing-type
models [75] such as the Gierer-Meinhardt model [33], the Schnakenberg model [66], the
Thomas model [73], the Gray-Scott model [31, 32] and others described in [4, 5, 7, 8, 54].
Related systems include models to study the robustness of gene networks [27, 28, 44, 53, 67,
78, 88], and Fisher’s equation [13, 29] with various applications including tissue engineer-
ing (e.g. [52]) and gene propagation (e.g. [29]). Although (1) has a linear diffusion part, the
nonlinear reaction part is usually complicated. Efficient and accurate numerical methods for
the type of semilinear PDEs represented by (1) are essential when we carry out the parameter
variation studies and computational analysis for systems in developmental biology.

Because of the complex shapes of embryos and their parts, the reaction-diffusion equa-
tions (1) are often applied to high dimensional irregular geometrical domains, particularly
when the shape and size of embryos play important roles in the studied biological sys-
tems (e.g. [3, 25, 48, 55, 90]). Finite element numerical methods on unstructured meshes
are powerful means for handling the complicated domain geometries [42]. In [36, 49–51,
63, 68], continuous Galerkin (CG) finite element methods were used to solve examples of
the reaction-diffusion equations (1) on complex domains. Recently, discontinuous Galerkin
(DG) finite element methods have become increasingly popular to solve various PDEs. The
DG methods use a completely discontinuous piecewise polynomial space for the numerical
solution and the test functions. The first DG method was introduced by Reed and Hill [60],
in relation to the problem of neutron transport. A major development of the DG method was
carried out by Cockburn, Shu et al. in a series of papers [20–24] in which they established a
framework for solving nonlinear time dependent hyperbolic conservation laws.

DG methods confer several advantages that make them attractive for applications. These
include their ability for readily addressing complicated geometry and boundary conditions
(an advantage shared by all finite element methods), their flexibility for easy hp-adaptivity
(combinations of refining/unrefining elements (h-adaptivity) and changing order of base
functions (p-adaptivity)) including changes of approximation orders between neighboring
elements and allowing the use of general meshes with hanging nodes, their compactness
and efficient parallel implementation [12], and their easy coordination with finite volume
techniques for computing problems with discontinuous or sharp gradient solutions.

The DG method has found applications in many diverse areas. Good references for the
method and its recent development include a survey paper [17] and other papers in the same
Springer volume, as well as several review articles [16, 18]. Besides its success in solv-
ing first order hyperbolic conservation laws, the DG method has been generalized to solve
time dependent PDEs containing higher spatial derivatives. It has been adapted to solve a
convection diffusion equation (containing second derivatives) by Cockburn and Shu [19],
motivated by the successful numerical experiments of Bassi and Rebay [9] for the com-
pressible Navier-Stokes equations. This method is termed the local discontinuous Galerkin
(LDG) method because the auxiliary variables introduced to approximate spatial derivatives
can be eliminated locally. Later, LDG methods were developed to solve various nonlinear
time dependent PDEs with higher order derivatives [45, 80–85]. For alternative DG methods
for diffusion problems, see [6, 10, 46, 59, 61, 62].

In a recent paper [14], Cheng and Shu developed a new DG method for solving time
dependent PDEs with higher order spatial derivatives, based on [1, 30, 76]. The scheme
is formulated by repeated integration by parts of the original equation and then replacing
the interface values of the solution by carefully chosen numerical fluxes. Compared to the



J Sci Comput (2009) 40: 391–418 393

LDG method, this new DG method can be applied without introducing any auxiliary vari-
ables or rewriting the original equation in the form of a larger system, hence it is easier to
formulate and implement, has a smaller effective stencil, and may reduce storage and com-
putational cost [14]. In this paper, we have adopted the DG approaches of [14] for the spatial
discretization of reaction-diffusion equations (1), on two dimensional triangular meshes.

Another computational challenge comes from the stiffness of reaction-diffusion equa-
tions (1) and the DG spatial discretization operator, which would require efficient time dis-
cretization techniques. On the one hand, standard explicit methods are highly inefficient
because of their severe stability constraint, hence stabilized explicit methods were devel-
oped (e.g. [26, 77]). On the other hand, the implicit methods (e.g. [11, 37, 47]) are more
popularly used due to their larger stability region. But the fully implicit Runge-Kutta or
Backward Difference Formula methods require the solution of typically nonlinear coupled
system of equations, and the computational cost can be significant. One popular strategy
to avoid solving the completely coupled nonlinear system is to use the Operator Splitting
(OS) approach (see e.g. [63, 69, 70, 86]). We adopted the Strang type second-order sym-
metrical OS schemes [39, 70] to split the diffusion from the reaction terms of (1). Since
the whole problem is thus broken down into smaller parts, we can solve the linear diffusion
problem and the nonlinear reaction problem individually by implicit temporal schemes. By
means of this approach, at each time step, the coupled system resulting from the DG spatial
discretization of the diffusion term is linear and sparse and we can solve it efficiently by
a sparse system solver. On each element, we only need to solve a small nonlinear system,
which has the same size as the product of the number of the PDEs in the system (1) and
the degrees of freedom of the approximation polynomial. The local nonlinear system can be
solved efficiently by an iterative procedure such as Newton’s method.

We note that an alternative way to solve reaction-diffusion systems efficiently on com-
plicated geometrical domains is to use continuous Galerkin (CG) finite element methods
together with an operator splitting technique [63]. CG and DG methods each have their own
advantages. CG methods have fewer degrees of freedom, especially for the high spatial di-
mensional problems. However for the reaction-diffusion systems in developmental biology,
sharp gradients are often formed. Adaptive methods are especially efficient for resolving the
structure of sharp gradients in the solution (e.g. [41, 71, 87]). DG methods can easily handle
adaptivity strategies since refinement or unrefinement of the grid can be achieved without
dealing with the continuity restrictions typical of conforming finite element methods. More-
over, the degree of the approximating polynomial can be easily changed from one element to
the other, and the use of general meshes with hanging nodes is allowed [17]. Based on these
favorable properties of DG methods, DG methods should prove to be highly appropriate for
designing adaptive methods for reaction-diffusion systems in developmental biology.

In Sect. 2, we describe in detail the DG spatial discretization combined with Strang’s
operator splitting and the Crank-Nicholson temporal discretization to solve the reaction-
diffusion systems (1), on 2D triangular meshes. In Sect. 3, we test the numerical methods
for reaction-diffusion equations with exact solutions, and demonstrate its good stability and
accuracy. We compare the cases with and without OS to demonstrate the computational effi-
ciency enhancement due to the operator splitting technique. In Sect. 4, we apply the methods
to two reaction-diffusion models used in developmental biology, the classical Schnakenberg
model [66] and a new model for skeletal pattern formation during vertebrate limb develop-
ment [3]. We show by various simulations of these models the effect on resulting patterns of
varying domain size and shape. Conclusions are given in Sect. 5.
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2 Numerical Methods

For purposes of clear presentation, we first describe the numerical methods for the scalar
case (p = 1) of (1), in Sects. 2.1 and 2.2. In Sect. 2.3, we straightforwardly extend the
algorithm to solve the system case (p > 1) of (1).

2.1 The DG Spatial Discretization

Let � be an open, bounded domain on which the reaction-diffusion system (1) is defined.
We consider a triangulation �h of � which consists of nonoverlapping triangles {�m}N

m=1.
Let hmin = min1≤m≤N ρm, where ρm is the diameter of the inscribed circle of the triangle �m.

Define the finite element space V k
h = {v : v|�m ∈ P k(�m),m = 1, . . . ,N}, where P k(�m)

denotes the set of all polynomials of degree at most k on �m.
We apply the DG formulation [14] to discretize the reaction-diffusion equations (1) in

the spatial direction, but keep the time variable continuous. The semi-discrete scheme is:
find u ∈ V k

h , such that

∫
�m

utvdx − D

∫
�m

u∇2vdx + D

∫
∂�m

û∇v · �n∂�mdS − D

∫
∂�m

v∇̃u · �n∂�mdS

=
∫

�m

F (u)vdx (2)

holds true for any v ∈ V k
h and m = 1, . . . ,N . The numerical fluxes on the element edges

∂�m are chosen as

û = uin + uext

2
, (3)

∇̃u = (∇u)in + (∇u)ext

2
+ β[u], (4)

where the jump term

[u] = (uext − uin)|∂�m · �n∂�m, (5)

uin and uext are the limits of u at x ∈ ∂�m taken from the interior and the exterior of �m

respectively, �n∂�m is the outward unit normal to the element �m at x ∈ ∂�m, and β is
a positive constant that is of the order O(h−1

min). In all of computations of this paper, we
take β = 10/hmin. The choice of numerical fluxes (3)–(5) is crucial for the stability and
convergence of the DG scheme (2). See [14, 19] for more discussions about the choice of
numerical fluxes.

In this paper, we consider the P 1 case such that the order of accuracy in the spatial
direction is consistent with the splitting error order in the temporal direction, and they are
both two. For each element �m, denote its three neighboring elements by im, jm, and km. To
simplify notations in the following presentation, we will omit the subscript m and just use
i, j , k to represent the neighboring cells of �m, as shown in Fig. 1. The linear polynomial
on �m is represented by

u(x, y, t) = am(t) + bm(t)ξm + cm(t)ηm (6)
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Fig. 1 A typical stencil

where

ξm = x − xm

hm

, (7)

ηm = y − ym

hm

, (8)

and (xm, ym) is the barycenter of the element �m, hm = √|�m| with |�m| denoting the
area of �m. By taking v = 1, ξm, ηm on �m and v = 0 elsewhere, the DG formulation (2) is
converted from the integral form to the following system, for m = 1, . . . ,N :

q11a
′
m(t) + q12b

′
m(t) + q13c

′
m(t)

= D

{
wam1am(t) + wbm1bm(t) + wcm1cm(t)

+
∑

l=i,j,k

[wal1al(t) + wbl1bl(t) + wcl1cl(t)]

}

+ (q11/3)
∑

l=i,j,k

F (u(xm,l, ym,l)), (9)

q21a
′
m(t) + q22b

′
m(t) + q23c

′
m(t)

= D

{
wam2am(t) + wbm2bm(t) + wcm2cm(t)

+
∑

l=i,j,k

[wal2al(t) + wbl2bl(t) + wcl2cl(t)]
}

+ (q11/3)
∑

l=i,j,k

F (u(xm,l, ym,l))ξm(xm,l, ym,l), (10)

q31a
′
m(t) + q32b

′
m(t) + q33c

′
m(t)

= D

{
wam3am(t) + wbm3bm(t) + wcm3cm(t)
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+
∑

l=i,j,k

[wal3al(t) + wbl3bl(t) + wcl3cl(t)]
}

+ (q11/3)
∑

l=i,j,k

F (u(xm,l, ym,l))ηm(xm,l, ym,l), (11)

where the coefficients {qrs}3
r,s=1, {{walr}3

r=1, {wblr}3
r=1, {wclr}3

r=1}l=m,i,j,k are constants which
depend on the local geometry of the mesh (i.e., triangle �m and its neighboring cells i, j, k

and �n∂�m as shown in Fig. 1, the local basis functions 1, {ξl, ηl}l=m,i,j,k , and the constant β .
{(xm,l, ym,l)}l=i,j,k are the mid-points of the three edges {el}l=i,j,k of �m which serve as
Gaussian quadrature points for the integral involving the nonlinear reaction terms in (2).
The detailed formulae for computing these constants are presented in the Appendix. In our
implementation, these mesh-dependent constants are pre-calculated before the time evolu-
tion since they don’t depend on the numerical solution u. Rewrite equations (9)–(11) to the
matrix-vector form

Qm
�V ′
m(t) = D

∑
l=m,i,j,k

Wl
�Vl(t) + �Fm( �Vm) (12)

where

Qm =
⎛
⎝q11 q12 q13

q21 q22 q23

q31 q32 q33

⎞
⎠ , Wl =

⎛
⎝wal1 wbl1 wcl1

wal2 wbl2 wcl2

wal3 wbl3 wcl3

⎞
⎠ , �Vm =

⎛
⎝am(t)

bm(t)

cm(t)

⎞
⎠ ,

�Vl =
⎛
⎝al(t)

bl(t)

cl(t)

⎞
⎠ , �Fm( �Vm) =

⎛
⎜⎜⎝

(q11/3)
∑

l=i,j,k F (u(xm,l, ym,l))

(q11/3)
∑

l=i,j,k F (u(xm,l, ym,l))ξm(xm,l, ym,l)

(q11/3)
∑

l=i,j,k F (u(xm,l, ym,l))ηm(xm,l, ym,l)

⎞
⎟⎟⎠ .

Finally we have the ODE system resulting from the DG spatial discretization:

�V ′
m(t) = D

∑
l=m,i,j,k

W̃l
�Vl(t) + �̃Fm( �Vm), m = 1, . . . ,N, (13)

where W̃l = Q−1
m Wl , �̃Fm = Q−1

m
�Fm. Again, these mesh-dependent data Q−1

m and W̃l are pre-
calculated and stored before the time evolution since they don’t depend on the numerical
solution u.

2.2 Operator Splitting

The ODE system (13) has a linear term resulting from the diffusion and a nonlinear term
coming from the reaction of (1). Both of terms can cause stiffness in the reaction-diffusion
models arising in developmental biology (e.g. [3]). Hence we need to use fully implicit
schemes to solve (13). In order to avoid solving a large coupled nonlinear system of equa-
tions at every time step, We adopted the popular Strang type second-order symmetrical OS
schemes [39, 70] to split the diffusion from the reaction terms of (1). The large nonlinear
problem is decoupled, hence we can solve the linear diffusion problem and the nonlinear
reaction problem individually by implicit temporal schemes. The resulting nonlinear prob-
lems are local for each element hence they can be solved efficiently by an iterative method
such as Newton’s method.
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Denote the numerical solution of the ODE system (13) at t = tn by �V n
m . To evolve the

system (13) from the time step tn to tn+1, the classical Strang symmetrical OS scheme [70]
combined with the Crank-Nicholson method consists of the following three sub-steps:

Step 1 Apply Crank-Nicholson for the diffusion term at [tn, tn+ 1
2 ]:

�v0,m = �V n
m, m = 1, . . . ,N,

(14)

�v1,m = �v0,m + 1

4
�t

⎡
⎣D

∑
l=m,i,j,k

W̃l �v0,l + D
∑

l=m,i,j,k

W̃l �v1,l

⎤
⎦ , m = 1, . . . ,N.

The sparse linear system (14) is solved by the sparse linear solver “lin_sol_gen_coordinate”
of IMSL package.

Step 2 Apply Crank-Nicholson for the reaction term at [tn, tn+1], with �v1,m as input data:

�v2,m = �v1,m + 1

2
�t[ �̃Fm(�v1,m) + �̃Fm(�v2,m)]. (15)

The local nonlinear system (15) on the element m is solved by Newton iterations, with the
initial guess �v1,m, for m = 1, . . . ,N .

Step 3 Apply Crank-Nicholson for the diffusion term at [tn+ 1
2 , tn+1], with �v2,m as input data:

�v3,m = �v2,m + 1

4
�t

⎡
⎣D

∑
l=m,i,j,k

W̃l �v2,l + D
∑

l=m,i,j,k

W̃l �v3,l

⎤
⎦ , m = 1, . . . ,N,

(16)�V n+1
m = �v3,m, m = 1, . . . ,N.

Again, the sparse linear system (16) is solved by the solver “lin_sol_gen_coordinate”.
The Trapezoidal OS [39] scheme is a Strang type symmetrical operator splitting method.

In stead of using Crank-Nicholson method in the steps 1 and 3, it uses the forward and
backward Euler schemes hence is computationally cheaper, and still keeps second order
accuracy. We also apply the Trapezoidal OS scheme for (13):

Step 1 Apply forward Euler for the diffusion term at [tn, tn+ 1
2 ]:

�v0,m = �V n
m, m = 1, . . . ,N,

(17)

�v1,m = �v0,m + 1

2
�t

⎡
⎣D

∑
l=m,i,j,k

W̃l �v0,l

⎤
⎦ , m = 1, . . . ,N.

Step 2 Apply Crank-Nicholson for the reaction term at [tn, tn+1], with �v1,m as input data:

�v2,m = �v1,m + 1

2
�t[ �̃Fm(�v1,m) + �̃Fm(�v2,m)]. (18)

The local nonlinear system (18) on the element m is solved by Newton iterations, with the
initial guess �v1,m, for m = 1, . . . ,N .
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Step 3 Apply backward Euler for the diffusion term at [tn+ 1
2 , tn+1], with �v2,m as input data:

�v3,m = �v2,m + 1

2
�t

⎡
⎣D

∑
l=m,i,j,k

W̃l �v3,l

⎤
⎦ , m = 1, . . . ,N, (19)

�V n+1
m = �v3,m, m = 1, . . . ,N. (20)

The sparse linear system (19) is solved by the solver “lin_sol_gen_coordinate”.

2.3 Reaction-Diffusion System

The numerical methods described in Sects. 2.1 and 2.2 can be straightforwardly ex-
tended to solve the case of a general system component by component. Consider the
system case of (1). Let u = (u1, u2, . . . , up)T , the diffusion matrix D = (di1i2)p×p , and
F = (F1,F2, . . . ,Fp)T , then the reaction-diffusion system has the expanded form

∂ui1

∂t
=

p∑
i2=1

(di1i2∇2ui2) + Fi1(u1, u2, . . . , up), i1 = 1,2, . . . , p. (21)

Represent the numerical solution on �m by

ui1(x, y, t) = am,i1(t) + bm,i1(t)ξm + cm,i1(t)ηm, i1 = 1,2, . . . , p. (22)

We apply the DG spatial discretization in Sect. 2.1 to each equation of (21). Let

�Vm,i1 =
⎛
⎝am,i1(t)

bm,i1(t)

cm,i1(t)

⎞
⎠ , i1 = 1,2, . . . , p,

and we have the ODE system

�V ′
m,i1

(t) =
∑

l=m,i,j,k

W̃l (

p∑
i2=1

di1i2
�Vl,i2(t)) + �̃Fm,i1(

�Vm,1, �Vm,2, . . . , �Vm,p),

i1 = 1,2, . . . , p, m = 1, . . . ,N. (23)

Then the operator splitting technique in Sect. 2.2 is applied to solve the ODE system (23).

3 Numerical Tests on Simple Systems

In this section, we test the stability, accuracy and efficiency of the DG-Strang symmetrical
OS scheme (14)–(16) and the DG-trapezoidal OS scheme (17)–(20), for simple parabolic
PDEs with an exact solution. First we test the linear stability using both one-dimensional and
two dimensional linear parabolic problems. By increasing the time step size successively, we
observe the convergence behavior of the schemes. Numerical results for the DG-trapezoidal
OS scheme will be presented. To save space, we omit the presentation of the results for
the DG-Strang symmetrical OS scheme, which follow a similar stability pattern in our tests.
Then using a nonlinear problem, we compare the numerical results for the approaches of DG
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methods with OS and without OS. All numerical simulations of this and the next sections
are performed on a 2.2 GHz, 8 GB RAM Linux PC.

All of the reaction-diffusion systems considered in the paper are subject to no-flux bound-
ary conditions. If the element edge el of �m is aligned with the domain boundary ∂�, we
take uin|el

= uext|el
, and (∇u)in|el

· �nel
= (∇u)ext|el

· �nel
= 0 in the numerical fluxes (3)–(5).

Hence we have

û|el
= uin|el

, ∇̃u|el
· �nel

= 0

in the scheme (2).

Example 1 Consider the one-dimensional problem

{
ut = uxx − u + π2e−t cos(πx), 0 < x < 1,

u(x,0) = cos(πx),
(24)

with the no-flux boundary conditions. The exact solution is u(x, t) = e−t cos(πx). The sim-
ulation is carried up to T = 8.0 at which the L1, L2 and L∞ errors are measured. The
time step size is increased successively as �t = �x, 2�x, 4�x, 8�x, and 16�x where
�x = 1/N and N is the number of spatial elements. CPU time, errors, and order of accu-
racy are reported in Table 1 for different ratios of �t and �x. From the Table 1, we can
observe that the DG-trapezoidal OS scheme is stable even for a very large time step size,
and second order accuracy is obtained. This is also illustrated in Fig. 2.

Example 2 Consider the two-dimensional problem

{
ut = uxx + uyy − u + 2π2e−t cos(πx) cos(πy), (x, y) ∈ (0,1) × (0,1);
u(x, y,0) = cos(πx) cos(πy),

(25)

with the no-flux boundary conditions. The exact solution is u(x, y, t) = e−t cos(πx) cos(πy).
We use triangular meshes, shown in Fig. 3 for the coarsest case of 44 cells, to perform the
convergence study. The refinement of the meshes is done in a uniform way, namely by cut-
ting each triangle into four smaller similar ones [89]. The simulation is carried up to T = 8.0
at which the L1, L2 and L∞ errors are measured. The time step size is increased successively
as �t = hmin, 2hmin, 4hmin, 8hmin, and 16hmin. CPU time, errors, and order of accuracy are
reported in Table 2 for different ratios of �t and hmin. Similarly to the one-dimensional
problem in Example 1, we can observe that the DG-trapezoidal OS scheme is stable even
for a very large time step size, and second order accuracy is obtained, from both the results
in Table 2 and the illustration Fig. 4.

Example 3 Consider the two-dimensional nonlinear problem

⎧⎪⎨
⎪⎩

ut = uxx + uyy − u2 + e−2 cos(πx)2 cos(πy)2 + (2π2 − 1)e−t cos(πx) cos(πy),

(x, y) ∈ (0,1) × (0,1),

u(x, y,0) = cos(πx) cos(πy),

(26)

with no-flux boundary conditions. The exact solution is u(x, y, t) = e−t cos(πx) cos(πy).

We use the triangular meshes (Fig. 3) as that in Example 2. The simulation is carried up to
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Table 1 CPU time, error, and order of accuracy of the DG method with trapezoidal OS for Example 1. Time
step size is increased successively. Final time T = 8.0

�t = �x

N CPU (s) L1 error Order L2 error Order L∞ error Order

10 0.03 1.23E−06 – 1.36E−06 – 1.93E−06 –

20 0.1 3.09E−07 1.99 3.44E−07 1.99 4.86E−07 1.99

40 0.43 7.75E−08 2.00 8.61E−08 2.00 1.22E−07 2.00

80 1.69 1.94E−08 2.00 2.15E−08 2.00 3.04E−08 2.00

160 6.87 4.85E−09 2.00 5.38E−09 2.00 7.61E−09 2.00

320 28.1 1.21E−09 2.00 1.35E−09 2.00 1.90E−09 2.00

�t = 2�x

N CPU (s) L1 error Order L2 error Order L∞ error Order

10 0.02 3.20E−07 – 3.54E−07 – 4.99E−07 –

20 0.06 7.76E−08 2.04 8.61E−08 2.04 1.22E−07 2.04

40 0.2 1.92E−08 2.01 2.14E−08 2.01 3.02E−08 2.01

80 0.86 4.80E−09 2.00 5.33E−09 2.00 7.54E−09 2.00

160 3.42 1.20E−09 2.00 1.33E−09 2.00 1.88E−09 2.00

320 14.01 3.00E−10 2.00 3.33E−10 2.00 4.71E−10 2.00

�t = 4�x

N CPU (s) L1 error Order L2 error Order L∞ error Order

10 0.01 6.66E−06 – 7.40E−06 – 1.04E−05 –

20 0.03 1.63E−06 2.03 1.82E−06 2.03 2.57E−06 2.02

40 0.11 4.07E−07 2.01 4.52E−07 2.01 6.39E−07 2.01

80 0.42 1.02E−07 2.00 1.13E−07 2.00 1.60E−07 2.00

160 1.71 2.54E−08 2.00 2.82E−08 2.00 3.99E−08 2.00

320 7.01 6.35E−09 2.00 7.05E−09 2.00 9.97E−09 2.00

�t = 8�x

N CPU (s) L1 error Order L2 error Order L∞ error Order

10 0. 3.46E−05 – 3.85E−05 – 5.43E−05 –

20 0.02 8.01E−06 2.11 8.90E−06 2.11 1.26E−05 2.11

40 0.05 1.97E−06 2.03 2.18E−06 2.03 3.09E−06 2.03

80 0.22 4.89E−07 2.01 5.43E−07 2.01 7.68E−07 2.01

160 0.85 1.22E−07 2.00 1.36E−07 2.00 1.92E−07 2.00

320 3.51 3.05E−08 2.00 3.39E−08 2.00 4.80E−08 2.00

�t = 16�x

N CPU (s) L1 error Order L2 error Order L∞ error Order

10 0. 2.26E−04 – 2.51E−04 – 3.54E−04 –

20 0. 3.61E−05 2.64 4.01E−05 2.64 5.67E−05 2.64

40 0.02 8.36E−06 2.11 9.28E−06 2.11 1.31E−05 2.11

80 0.12 2.05E−06 2.03 2.28E−06 2.03 3.22E−06 2.03

160 0.42 5.10E−07 2.01 5.66E−07 2.01 8.01E−07 2.01

320 1.78 1.27E−07 2.00 1.41E−07 2.00 2.00E−07 2.00
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Fig. 2 Error as a function of number of cells N for the DG method with trapezoidal OS for Example 1. (a) N

vs. L1 error; (b) N vs. L2 error; (c) N vs. L∞ error

Fig. 3 Coarsest mesh with 44
triangles in the convergence
study

T = 1.0 at which the L1, L2 and L∞ errors are measured. The time step size is taken to
be �t = 0.1hmin. We use the three different approaches: the DG spatial discretization (13)
with the Crank-Nicholson temporal discretization (without OS), the DG-Strang symmetrical
OS scheme (14)–(16), and the DG-trapezoidal OS scheme (17)–(20). We list the CPU time,
errors, and order of accuracy for the DG w/o OS in Table 3, for the DG-Strang symmetrical
OS in Table 4, and for the DG-trapezoidal OS in Table 5. The second order accuracy is
achieved for all of these three approaches. This is also illustrated in Fig. 5. In Fig. 6, we
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Table 2 CPU time, error, and order of accuracy of the DG method with trapezoidal OS for Example 2. Final
time T = 8.0

�t = hmin

# of cells CPU (s) L1 error Order L2 error Order L∞ error Order

44 0.17 9.55E−06 – 1.13E−05 – 2.81E−05 –

176 1.44 2.44E−06 1.97 2.91E−06 1.95 7.78E−06 1.85

704 16.39 6.14E−07 1.99 7.37E−07 1.98 2.06E−06 1.91

2816 274 1.53E−07 2.00 1.84E−07 2.00 5.29E−07 1.96

11264 17717 3.52E−08 2.12 4.31E−08 2.10 1.58E−07 1.74

�t = 2hmin

# of cells CPU (s) L1 error Order L2 error Order L∞ error Order

44 0.08 9.10E−06 – 1.08E−05 – 3.09E−05 –

176 0.76 2.29E−06 1.99 2.76E−06 1.97 8.55E−06 1.85

704 8.92 5.77E−07 2.00 6.95E−07 1.99 2.22E−06 1.94

2816 146 1.44E−07 2.00 1.74E−07 2.00 5.66E−07 1.97

11264 9788 3.54E−08 2.02 4.28E−08 2.02 1.64E−07 1.79

�t = 4hmin

# of cells CPU (s) L1 error Order L2 error Order L∞ error Order

44 0.04 6.23E−06 – 7.87E−06 – 3.21E−05 –

176 0.4 1.56E−06 2.00 2.01E−06 1.97 8.94E−06 1.84

704 5.02 3.88E−07 2.01 5.03E−07 2.00 2.53E−06 1.82

2816 81.67 9.65E−08 2.01 1.25E−07 2.01 7.31E−07 1.79

11264 5126 2.39E−08 2.03 3.09E−08 2.02 2.08E−07 1.81

�t = 8hmin

# of cells CPU (s) L1 error Order L2 error Order L∞ error Order

44 0.03 1.59E−05 – 1.96E−05 – 7.81E−05 –

176 0.23 3.54E−06 2.16 4.34E−06 2.20 1.92E−05 2.04

704 3.14 8.71E−07 2.02 1.06E−06 2.03 5.18E−06 1.89

2816 49.68 2.17E−07 2.00 2.65E−07 2.01 1.40E−06 1.89

11264 2803 5.48E−08 1.99 6.68E−08 1.99 3.77E−07 1.89

�t = 16hmin

# of cells CPU (s) L1 error Order L2 error Order L∞ error Order

44 0.02 1.13E−04 – 1.39E−04 – 2.74E−04 –

176 0.14 2.30E−05 2.30 2.85E−05 2.29 6.88E−05 1.99

704 2.14 4.86E−06 2.24 5.99E−06 2.25 1.54E−05 2.16

2816 33.47 1.19E−06 2.03 1.46E−06 2.03 3.91E−06 1.98

11264 1469 2.96E−07 2.01 3.65E−07 2.01 1.00E−06 1.96

compare the computational time of these three approaches by plotting errors as a function
of CPU time, and it is obvious that in order to reach the same numerical error level, the
DG-trapezoidal OS approach requires the smallest computational time, and the DG w/o OS
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Fig. 4 Error as a function of hmin for the DG method with trapezoidal OS for Example 2. (a) hmin vs. L1

error; (b) hmin vs. L2 error; (c) hmin vs. L∞ error

Table 3 CPU time, error, and order of accuracy of the DG method w/o OS for Example 3. Final time T = 1.0

# of cells CPU (s) L1 error Order L2 error Order L∞ error Order

44 0.65 1.42E−02 – 1.74E−02 – 3.83E−02 –

176 9.28 3.74E−03 1.92 4.56E−03 1.93 1.04E−02 1.89

704 207 9.50E−04 1.98 1.16E−03 1.98 2.73E−03 1.92

2816 8371 2.39E−04 1.99 2.91E−04 1.99 7.41E−04 1.88

11264 809367 5.98E−05 2.00 7.30E−05 2.00 2.12E−04 1.81

Table 4 CPU time, error, and order of accuracy of the DG-Strang symmetrical OS scheme for Example 3.
Final time T = 1.0

# of Cells CPU (s) L1 error Order L2 error Order L∞ error Order

44 0.52 1.36E−02 – 1.67E−02 – 3.84E−02 –

176 3.95 3.80E−03 1.84 4.66E−03 1.84 1.29E−02 1.58

704 38 1.01E−03 1.91 1.24E−03 1.91 3.74E−03 1.78

2816 617 2.38E−04 2.09 2.94E−04 2.08 8.18E−04 2.19

11264 42705 6.31E−05 1.92 7.74E−05 1.92 2.34E−04 1.81
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Table 5 CPU time, error, and order of accuracy of the DG-trapezoidal OS scheme for Example 3. Final time
T = 1.0

# of cells CPU (s) L1 error Order L2 error Order L∞ error Order

44 0.53 1.20E−02 – 1.46E−02 – 3.35E−02 –

176 3.91 3.04E−03 1.98 3.71E−03 1.98 8.93E−03 1.91

704 32 7.62E−04 1.99 9.34E−04 1.99 2.34E−03 1.93

2816 406 1.91E−04 2.00 2.33E−04 2.00 6.46E−04 1.86

11264 22563 4.77E−05 2.00 5.84E−05 2.00 1.88E−04 1.78

Fig. 5 Error as a function of hmin for three different approaches for Example 3, dotted lines with circles: DG
w/o OS; dashed lines with diamonds: DG-Strang symmetrical OS scheme; dash-dotted lines with squares:
DG-trapezoidal OS scheme. (a) hmin vs. L1 error; (b) hmin vs. L2 error; (c) hmin vs. L∞ error

is the most expensive. The DG-Strang symmetrical OS approach falls between them. This
is due to the fact that at every time step we do not need to solve coupled nonlinear systems
by using OS approaches, and the DG-trapezoidal OS only requires solving the linear system
once rather than twice as in the DG-Strang symmetrical OS approach.
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Fig. 6 Error as a function of CPU time for three different approaches for Example 3, dotted lines with
circles: DG w/o OS; dashed lines with diamonds: DG-Strang symmetrical OS scheme; dash-dotted lines with
squares: DG-trapezoidal OS scheme. (a) CPU time vs. L1 error; (b) CPU time vs. L2 error; (c) CPU time vs.
L∞ error

4 Applications to Two Models in Developmental Biology

For proper functioning of tissues, organs and embryos, each cell is required to differentiate
appropriately for its position. Position-dependent cell differentiation is often controlled by
concentration gradients of morphogens. Morphogens are signaling molecules that become
distributed over a tissue domain or field, and when bound to cell receptors, assign differ-
ent cell fates at different concentrations [72, 79]. Morphogen-based mechanisms have been
widely proposed for tissue patterning for over half a century; but only recently have there
been sufficient experimental data and adequate modeling for us to begin to understand how
various morphogens interact with cells and patterns emerge [35, 44]. In this section, we ap-
ply the DG methods with trapezoidal operator splitting (17)–(20) to two reaction-diffusion
systems that have been used for modelling morphogen systems in developmental biology.
An important outcome of this analysis is a demonstration of the effects of different domain
geometries on the patterns of these reaction-diffusion models.

4.1 The Schnakenberg Model

The Schnakenberg system [66] has been used to model the spatial distribution of a mor-
phogen, e.g., the distribution of calcium in the hairs of the whorl in Acetabularia [34]. It is
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Table 6 CPU time, error, and order of accuracy for DG methods with trapezoidal operator splitting applied
to the Schnakenberg model, T = 1

�t CPU (s) L1 error Order L2 error Order L∞ error Order

5e−4 3400 6.23E−03 – 1.21E−02 – 9.31E−02 –

2.5e−4 5846 1.69E−03 1.88 3.36E−03 1.85 2.58E−02 1.85

1.25e−4 10464 4.33E−04 1.97 8.63E−04 1.96 6.63E−03 1.96

6.25e−5 19018 1.09E−04 1.99 2.16E−04 1.99 1.67E−03 1.99

also a classical example for the testing of numerical methods for reaction-diffusion equa-
tions, e.g. [40, 49, 51, 64]. The Schnakenberg system has the form

∂Ca

∂t
= D1∇2Ca + κ(a − Ca + C2

aCi), (27)

∂Ci

∂t
= D2∇2Ci + κ(b − C2

aCi), (28)

where Ca and Ci denote the concentration of activator and inhibitor respectively, D1 and
D2 are diffusion coefficients, κ , a and b are rate constants of the biochemical reactions.
Following the setup in [40], we take the initial conditions as

Ca(x, y,0) = a + b + 10−3 exp−100((x− 1
3 )2+(y− 1

2 )2), (29)

Ci(x, y,0) = b

(a + b)2
, (30)

and the boundary conditions are taken as homogeneous Neumann. The parameters values
are κ = 100, a = 0.1305, b = 0.7695,D1 = 0.05,D2 = 1.

First we compute (27)–(30) on the unit square domain � = (0,1)2. To study the perfor-
mance and convergence of the DG methods with trapezoidal operator splitting (17)–(20), we
list in Table 6 the CPU time, error, and order of accuracy for simulations of the Schnaken-
berg model (27)–(28). In this case, the spatial resolution is fixed with 1024 elements, 553
nodes and 1576 sides, as shown in Fig. 7a. The error at �t is measured as a difference
between this solution, Ca,�t , and the solution Ca,2�t for time step size 2�t at T = 1, i.e.,

E�t = ‖Ca,�t − Ca,2�t‖. (31)

The DG method with trapezoidal operator splitting (17)–(20) clearly shows a second order
of accuracy in time as expected. The time evolution of the concentration of activator Ca is
shown in Fig. 7. We can observe that the initial perturbation in (29)–(30) is amplified and
spreads, leading to formation of spot-like patterns.

Next we vary the shape and size of the domain, but keep all of parameters in the model
(27)–(30) unchanged. The time evolution plots of concentrations of activator Ca are shown
in Fig. 8 for a circular domain � = {(x, y)|(x − 0.5)2 + (y − 0.5)2 < 0.52}, Fig. 9 for an
elliptic domain � = {(x, y)|( x−0.5

0.25 )2 + (
y−0.5

0.5 )2 < 1}, and Fig. 10 for a narrow rectangular
domain � = [0,0.05]× [0,1]. It is interesting to notice that spot-like patterns are formed on
the circular and elliptic domains (Figs. 8, 9), but stripe-like patterns are formed on the narrow
rectangular domain Fig. 10. These simulations of the Schnakenberg system on different
domains provide an example of the sensitivity of patterns in reaction-diffusion systems with
respect to the domain size and shape.
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Fig. 7 Numerical solution of the
Schnakenberg model on a square
domain. Contour plots of time
evolution of the concentration of
the activator Ca

Fig. 8 Numerical solution of the
Schnakenberg model on a
circular domain. Contour plots of
time evolution of the
concentration of the activator Ca
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Fig. 9 Numerical solution of the
Schnakenberg model on an
elliptic domain. Contour plots of
time evolution of the
concentration of the activator Ca

Fig. 10 Numerical solution of the Schnakenberg model on a narrow rectangular domain. Contour plots of
time evolution of the concentration of the activator Ca
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4.2 A Model for Skeletal Pattern Formation in the Vertebrate Limb

Skeletal patterning in the vertebrate limb, i.e., the spatiotemporal regulation of cartilage
differentiation (“chondrogenesis”) during embryogenesis and regeneration, is one of the
best studied examples of a multicellular organism developmental process [56, 74]. Limb
morphogenesis involves subcellular, cellular and supracellular components that interact in a
reliable fashion to produce functional skeletal structures. Since many of the components and
interactions are also typical of other embryonic processes, understanding this phenomenon
can provide insights into a variety of morphogenetic events in early development.

The limb skeleton consists of nodules and rods of cartilage or bone, arranged in tandem
and parallel arrays [57, 58]. It thus lends itself to being modeled by systems like (1), which
readily generate spot- and stripe-like patterns.

The most detailed model for vertebrate limb development presented thus far is that of
[38], in which a system of eight PDEs was constructed largely on the basis of experimen-
tally determined cellular-molecular interactions occurring in the avian and mouse limb buds.
The full system has smooth solutions that exist globally in time but is difficult to handle [2]
mathematically and computationally. Recently in [3], by analytically implementing the as-
sumption that cell differentiation relaxes faster than the evolution of the overall cell density,
a simplified two-equation system was extracted from the eight-equation system governing
the interaction of two of the key morphogens: the activator and an activator-dependent in-
hibitor of precartilage condensation formation. The reduced reaction-diffusion system has
the form

∂Ca

∂t
= Da∇2Ca + U(Ca) − kaCaCi, (32)

∂Ci

∂t
= Di∇2Ci + V (Ca) − kaCaCi, (33)

where Ca denotes the concentration of the activator TGF-β , Ci concentration of the in-
hibitor, Da and Di the diffusion constants for the activator and the inhibitor respectively, ka

the inhibitor-activator binding rate, U and V the production rates of Ca and Ci , respectively.
The system is subject to no-flux boundary conditions and zero initial concentrations for Ca

and Ci . The functions U and V are given by

U(Ca) = [J 1
a α(Ca) + Ja(Ca)β(Ca)]Req,

(34)
V (Ca) = Ji(Ca)β(Ca)Req,

where Ja(Ca) = Ja max(Ca/s)
n/[1 + (Ca/s)

n], Ji(Ca) = Ji max(Ca/δ)
q/[1 + (Ca/δ)

q ], and
β(Ca) = β1Ca/(β2 + Ca). Following [3], the parameter values in the system are taken as
Da = 1,Di = 100.3, Ja max = 6.0λ,Ji max = 8.0λ, s = 4.0, ka = λ,J 1

a α(Ca) = 0.05λ,β1 =
0.693473, β2 = 2.66294,Req = 2.0, n = q = 2, where the value of λ is an important factor
which will effect the pattern as shown in the following simulations.

Since the natural shape of a limb bud and its subdomains such as the apical and ac-
tive zones [38] have non-standard geometries, it is important to study the effects of domain
geometry on the pattern generated by the model (32)–(33). We use the DG-trapezoidal OS
methods described in Sect. 2 to solve the system on two dimensional domains of differ-
ent shapes. These domains represent cross-sections of what is actually a three-dimensional
paddle-shaped tissue primordium termed the “apical zone”. This zone, which is the locus of
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Fig. 11 Numerical solution of the model (32)–(33) on domains with curved top and bottom boundaries,
which are part of the circles x2 + (y − 0.7)2 = 0.32 and x2 + (y − 0.3)2 = 0.32. (a), (b), (c): domains with
successive decreasing width and their meshes; (d), (e), (f): Contour plots of the concentration of the activator
Ca at time T = 1.0 (close to the steady-state)

activator-inhibitor dynamics, initially comprises the entire limb bud, but is increasingly con-
fined to narrower bands of tissue at the limb bud’s tip (reviewed in [57]). Triangular meshes
are used to fit domains with irregular shapes. First we partition a domain with curved top
and bottom boundaries by triangular mesh as shown in Fig. 11a. This domain has height
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Fig. 12 Numerical solution of the model (32)–(33) on domains with curved top and bottom boundaries,
which are part of the circles x2 + (y −1.0)2 = 0.32 and x2 +y2 = 0.32. (a), (b), (c): domains with successive
decreasing width and their meshes; (d), (e), (f): Contour plots of the concentration of the activator Ca at time
T = 1.0 (close to the steady-state)

1.0 in the vertical direction, and width 0.15 in the horizontal direction. The top and bot-
tom boundaries are parts of the circles x2 + (y − 0.7)2 = 0.32 and x2 + (y − 0.3)2 = 0.32,
respectively. A flood contour plot of the concentration of the activator Ca at time T = 1.0
(close to the steady-state) is shown in Fig. 11d. The parameter λ = 500 in this case, and a
one-stripe pattern is observed. Next we shrink the domain width in the horizontal direction
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Fig. 13 Numerical solution of the model (32)–(33) on domains with irregular shapes, with same reaction
parameters. (a), (b), (c): domains with different shapes and their meshes; (d), (e), (f): Contour plots of the
concentration of the activator Ca at time T = 1.0 (close to the steady-state)

to be 0.1 and 0.07 respectively, shown in Fig. 11b and c. Two-stripe and three-stripe patterns
can be obtained on these shrunken domains if we choose λ = 3900, shown in Fig. 11e and f.
The transitions to higher numbers of parallel stripes of activator correspond to the proxi-
modistal (i.e., from the body wall out to the limb tip) spatiotemporal order of development
of increasing numbers of rod-like skeletal elements in most vertebrate limbs [56, 57].
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We vary the shape of the domains by changing the top and bottom boundary curves to be
part of the circles x2 + (y −1.0)2 = 0.32 and x2 +y2 = 0.32 respectively, shown in Fig. 12a,
b, and c. Again we obtain one, two, and three-stripe patterns on successive shrinking do-
mains with λ = 500,1900,3900 respectively, shown in Fig. 12d, e, and f. This stability of
the patterns, and transitions between them, corresponds well to the general robustness of
developmental outcome to small changes in tissue shape, which may occur, for example,
between related species.

In contrast, if we fix the value of the kinetic parameter λ, and only vary the shape of
the domain, we observe the transition of stripe patterns to spot patterns. In the last set of
numerical experiments, Fig. 13, the value of λ is fixed to be 6900. We constructed irregular
domains with different shapes as shown in Fig. 13a, b, and c. We observe a transition from
stripe to spot patterns, as shown in Fig. 13d, e, and f. Configurations of nodular skeletal
elements arranged like the activator spots in Fig. 13f, are also found in portions of vertebrate
limbs, where they form the wrist and ankle bones that intervene between tiers of rod-like
elements.

5 Conclusions

In this paper discontinuous Galerkin (DG) finite element methods, coupled with Strang type
symmetrical operator splitting methods, were used for solving reaction-diffusion systems in
domains with complex geometry. The general approach for overcoming difficulties related
to complex domain geometry was demonstrated on two-dimensional triangular meshes. We
have shown improvement of computational efficiency due to the usage of operator splitting
technique in a variety of examples.

The new numerical approach resulted in important extensions of two reaction-diffusion
models with applications in developmental biology which were then used to demonstrate the
effects of domain geometry on the pattern formation. Namely, the methods described here
afford the possibility of treating reaction-diffusion and related pattern forming mechanisms
in domains with non-standard geometries, including the natural shapes found in embryos
and organ primordia. In particular, in the described limb development model described,
the effects of varying domain size and shape correspond to those seen under conditions of
normal growth and experimental manipulation. More generally, the DG methods provide a
means for testing hypotheses for the interaction between mechanisms of pattern formation
and changes in tissue geometry during development and evolution [65].

The numerical methods described in the paper can also be extended to numerically solve
other reaction-diffusion-advection type systems in mathematical biology including compu-
tationally challenging systems modeling chemotaxis [15, 43]. These systems involve ad-
vection terms with hyperbolic properties which can be treated by using DG methods with
upwind fluxes [18]. This will be studied in the future.
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Appendix: Formulae for Mesh-Dependent Constants in (12)

1. The matrix

Qm =
⎛
⎝q11 q12 q13

q21 q22 q23

q31 q32 q33

⎞
⎠ :

q11 =
∫

�m

dx,

q12 = q21 =
∫

�m

ξmdx,

q13 = q31 =
∫

�m

ηmdx,

q22 =
∫

�m

ξ 2
mdx,

q23 = q32 =
∫

�m

ξmηmdx,

q33 =
∫

�m

η2
mdx.

2. The matrix

Wm =
⎛
⎝wam1 wbm1 wcm1

wam2 wbm2 wcm2

wam3 wbm3 wcm3

⎞
⎠ :

wam1 =
∑

l=i,j,k

(−βr1l ),

wbm1 =
∑

l=i,j,k

(
r1lnl,x

2hm

− βr2lm

)
,

wcm1 =
∑

l=i,j,k

(
r1lnl,y

2hm

− βr3lm

)
,

wam2 =
∑

l=i,j,k

(
− r1lnl,x

2hm

− βr2lm

)
,

wbm2 =
∑

l=i,j,k

(−βs1mml),

wcm2 =
∑

l=i,j,k

(
r2lmnl,y − r3lmnl,x

2hm

− βs2mml

)
,

wam3 =
∑

l=i,j,k

(
− r1lnl,y

2hm

− βr3lm

)
,
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wbm3 =
∑

l=i,j,k

(
r3lmnl,x − r2lmnl,y

2hm

− βs2mml

)
.

wcm3 =
∑

l=i,j,k

(−βs3mml);

and the matrix

Wl =
⎛
⎝wal1 wbl1 wcl1

wal2 wbl2 wcl2

wal3 wbl3 wcl3

⎞
⎠ , l = i, j, k :

wal1 = βr1l ,

wbl1 = r1lnl,x

2hl

+ βr2l ,

wcl1 = r1lnl,y

2hl

+ βr3l ,

wal2 = − r1lnl,x

2hm

+ βr2lm,

wbl2 = r2lmnl,x

2hl

− r2lnl,x

2hm

+ βs1lm,

wcl2 = r2lmnl,y

2hl

− r3lnl,x

2hm

+ βs2lm,

wal3 = − r1lnl,y

2hm

+ βr3lm,

wbl3 = r3lmnl,x

2hl

− r2lnl,y

2hm

+ βs3lm,

wcl3 = r3lmnl,y

2hl

− r3lnl,y

2hm

+ βs4lm,

where

r1l =
∫

el

ds, r2l =
∫

el

ξlds, r3l =
∫

el

ηlds,

r2lm =
∫

el

ξmds, r3lm =
∫

el

ηmds,

s1lm =
∫

el

ξmξlds, s2lm =
∫

el

ξmηlds,

s3lm =
∫

el

ξlηmds, s4lm =
∫

el

ηmηlds,

s1mml =
∫

el

ξ 2
mds, s2mml =

∫
el

ξmηmds, s3mml =
∫

el

η2
mds.
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