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Matrix-Driven Translocation of Cells and Nonliving Particles

Abstract. Cells of metazoan organisms produce and react to complex macromo-

lecular microenvironments known as extracellular matrices. Assembly in vitro of
native, compositionally nonuniform collagen-flbronectin matrices caused transloca-
tion of certain types of cells or polystyrene-latex beads from regions lacking
fibronectin into regions containing it. The translocation process was not due to
diffusion, convection, or electrostatic distribution effects, but may depend on

nonequilibrium phenomena at the interface of contiguous collagen matrices formed
in the presence and absence of fibronectin or particles. Extracellular matrix
formation alone was sufficient to drive translocation by a biophysical process that
may play a role in cellular migration during embryogenesis, as well as in other types
of tissue reorganization such as inflammation, wound healing, and tumor invasion.

Extracellular matrix components such
as the collagens, fibronectin, laminin,
hyaluronic acid, and proteoglycans influ-
ence cellular biosynthetic activities,
shapes, and motility during interactions
with one another and with different types
of cells (1). It has usually been consid-
ered that cellular translocation results
from forces generated within cells that
are interacting with their matrices (2).
The matrix would impart speed and di-
rection to this motile activity by a combi-
nation of chemokinetic (3), chemotaxic
(4), and route-opening (5) effects. How-
ever, cells with no intrinsic motile be-
havior, and even nonliving particles such
as polystyrene beads, can be selectively
conveyed along neural crest pathways in
embryos into which they have been arti-
ficially introduced (6). We now report
that matrices constructed from collagen
and fibronectin generate a driving force
that is capable of translocating living
cells and nonliving particles several mil-
limeters in a matter of minutes.
Chick embryo cells of various types

were mixed with a gelling solution of
type I collagen (7, 8). Contiguous with
the cell-containing gel was a second gel
(legend to Fig. 1), poured at the same
time and containing different fibronec-
tins (3 to 50 ,ug/ml). At an appropriate
fibronectin concentration in the second
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gel (in excess of a threshold value be-
tween 3 and 6.25 ,g/ml), the cells moved
as much as 6 mm into the originally cell-
free region in about 10 minutes. The rate
of translocation (defined as movement
over distances of at least 1 mm) varied
with the concentration of collagen but
not with that of fibronectin once its
threshold level had been reached.
Primary gels containing chick limb bud

precartilage mesenchyme cells (9, 10)
(2.5 x 106 cells per milliliter) were

formed adjacent to secondary gels con-

taining chick cellular, chick plasma, or
human plasma fibronectin (12.5 Rg/ml),
or no fibronectin. Translocation began
10 to 15 seconds after the gels were

poured, and continued for as much as 20
minutes. Over a period of 5 to 20 min-
utes, cells from the border regions, in-
cluding those from about 1 mm away
from the interface, moved into the sec-

ondary gels containing chick cellular or
human plasma fibronectin, with the far-
thest moving cells traversing more than 5
mm. Movement then stopped and no

further change was observed in 2 days of
observation. In the presence of any of
several biologically active preparations
of chick plasma fibronectin (11) or in the
absence of fibronectin, no translocation
took place during the 2-day period (dis-
placement of the cell front from the

original boundary was less than 0.25
mm). This was the case when concentra-
tions of chick plasma fibronectin were
more than eight times the threshold level
for chick cellular or human plasma fibro-
nectin (Fig. 1). These experiments were
repeated 30 to 50 times for each fibronec-
tin, with six separately prepared batches
of rat tail tendon collagen, and there was
no variation in the qualitative results.
The rate of translocation depended on
the collagen concentration. If the colla-
gen concentration was higher or lower
than the optimal value of about 1.7 mg/
ml, translocation of cells was slower or
did not occur.

Individual cells and groups of cells
translocated at speeds of more than 5
gxm/sec (Fig. 2). Furthermore, the path
taken by each moving cell was unidirec-
tional, with none of the random walk
characteristics that would be expected
for a stochastic process such as diffu-
sion. Cells did not move in opposite
directions.

Different cell types varied in their re-
sponses to matrices containing different
fibronectins. Chick limb bud precartilage
cells translocated in response to human
plasma fibronectin and chick cellular fi-
bronectin, but not in response to chick
plasma fibronectin. Chick embryo fibro-
blasts responded to the human fibronec-
tin, but not to either chicken fibronectin.
In contrast, cells obtained from hearts of
5-day chick embryos did not respond to
any of the fibronectins (12).
Two observations suggested that the

translocating cells were not moving un-
der their own power. (i) The observed
rates of translocation were more than an
order of magnitude greater than the most
rapid cellular movement previously de-
scribed in vitro (2); (ii) cells translocating
in collagen gels showed none of the
changes in cellular morphology associat-
ed with motile behavior, as assessed by
Nomarski differential interference con-
trast microscopy.

Polystyrene latex beads are conveyed
along neural crest pathways in embryos
by a driving force arising from the extra-
cellular environment (6). We therefore
introduced such beads, instead of cells,
into collagen gels as the primary gel
systems (Fig. 3, a and b). When human
plasma fibronectin was present in the
secondary gel there was massive translo-
cation of the beads; when it was absent
there was no translocation. The same
threshold concentration of fibronectin
(between 3 and 6.25 ,ug/ml) was neces-
sary here as in the cell-containing sys-
tem. The beads were not translocated in
response to chick plasma fibronectin,
and only to a small extent with chick
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and pH. The fibrils formed in these cir-
cumstances were similar to those found
in tissues (native) (7). Gelling occurred in
the absence of native fibril formation if
either salt orpH was not at physiological
levels (7). When gels were not formed at
physiological salt or pH conditions,
translocation of cells or beads was com-
pletely eliminated as determined in 15
experiments. In addition, the matrix-
driven translocation of limb bud precarti-
lage mesenchyme cells or 6-p,m polysty-
rene latex beads did not occur with the
following polymeric matrices: agarose
(0.2 percent or 0.4 percent), methylcellu-
lose (1 percent), and type I + type II
collagen in a 25:1 ratio (17).
We conclude that matrix-driven trans-

location accompanies fibrillogenesis of
type I collagen and is likely to be thermo-
dynamically dependent on this process.
Moreover, the nature of the fibrils
formed, whether similar or different in
the two gel regions, is an essential factor
in promoting the effect (18).
The unidirectionality and great speed

of bead and cell movement preclude dif-
fusion as the mechanism of translocation
from the primary to the secondary gel.
Moreover the failure of the 0.2 ,um-
polystyrene latex beads to translocate
under conditions permissive for translo-
cation of the larger beads argues against
the possibility that formation of fluid or
matrix convection currents at the bound-

Table 1. Inert particles are selectively translocated by extracellular matrices. Primary gels
contained the particle types shown and secondary gels contained human plasma fibronectin (25
1Lg/ml). Polystyrene latex beads (6 ,um; Polysciences) were used as supplied, or were sulfonated
by incubation for 30 seconds with concentrated sulfuric acid. Sulfonated beads were washed
three times with medium before they were
added to the primary gel. Other types of Translocated Not translocated
polystyrene latex beads (carboxylated or 0.2
iLm) were used as supplied (Polysciences). Sephadex 6-25 (Dextran)
Latex beads (6 ,um) were coated with human Bio-Beads SM-2 (Sty-
plasma fibronectin as described by Bronner- rene-divinylbenzene)
Fraser (6) or by incubation with poly-L-lysine Bio-Gel P-60
(Sigma, 0.5 mg/ml) for 30 minutes. Poly L- (Polyacrylamide)
lysine-coated beads were subsequently coat- Polystyrene latex beads*
ed by incubation for 30 minutes with heparin Not coated Not coated, 0.2 ,umor dextran sulfates of molecular weights Sulfonated Fibronectin coated
ranging from 5,000 to 500,000 (12.5 mg/ml, Carboxylated POIY-L-lysine coated
Sigma). At least 20 replicates of each experi- Carboxyoated Pexy-L-lyaie coated
ment were performed with no differences in
outcome. *Unless otherwise noted, 6-p.m beads were used.

ary between primary and secondary gels
might be responsible for the conveyance
of particles from one region to another.
To test these possibilities more directly
we added Eosine Y (anionic), methylene
blue (cationic), or alizarin (uncharged at
neutral pH) to primary gels; secondary
gels contained human plasma fibronectin
(12.5 ,ug/ml). In no case did any apparent
movement of colored material occur
across the gel boundary within the first 15
minutes (Fig. 5, a to c). After more than an
hour of observation, the only apparent
change at the boundary was a fuzziness
resulting from diffusion of the stains.

Fibronectin-free matrix material sur-
rounding the moving particles appeared

to move across the original boundary
along with the particles (Fig. 2). To con-
firm this, alizarin was added to the pri-
mary gel in the presence of 6-,um latex
beads. The matrix of the primary gel, as
well as beads, was rapidly transported
across the interface (Fig. 5d).
The results of our experiments do not

support mechanisms for matrix-driven
translocation that depend on diffusion of
beads or cells (which would in any case
be orders of magnitude slower than diffu-
sion of stain molecules), or on any dis-
turbance at the boundary of the two
forming matrices resulting in convection
currents. They also exclude explanations
in terms of a Donnan-type redistribution
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Fig. 3 (left). Selective translocation of inert particles into human plasma fibronectin-containing
gels (12.5 ,ug/ml). Polystyrene latex beads were sonicated for 15 seconds and suspended in a
primary gel (legend, Fig. 1) in place of cells. (a) Primary gel contained 6-p.m beads, secondary
gel contained medium; (b) primary gel contained 6-pm beads, secondary gel contained
fibronectin; (c) primary gel contained 0.2-,um beads, secondary gel contained fibronectin; (d)
primary gel contained poly-L-lysine-coated 6-pm beads, secondary gel contained fibronectin.
Scale bar, 2 mm. Fig. 4 (right). Relationship between matrix-driven translocation and
collagen fibrillogenesis. (a) Distance translocated from the original position of a primary-

secondary gel boundary was measured at the tip of the moving bead front in three preparations similar to that in Fig. 3b. Preparations poured at
the same time, such as those indicated by the open and filled circles, usually have the same translocation kinetics. Open triangles indicate gels
that were poured several minutes later than gels used for experiments denoted by circles. About 15 such kinetic measurements were made, and in
each case the pattern of translocation became stabilized after 5 to 10 minutes when the collagen concentration was optimized for rapid
translocation (about 1.7 mg/ml). Arrow indicates the time of initiation of translocation. (b) Neutralized collagen mixtures at physiological ionic
strength, containing or lacking human plasma fibronectin (12.5 p.g/ml) were prepared as in Fig. 4A. Mixtures were placed in quartz cuvettes, and
absorbance at 400 nm was monitored in a Zeiss PM-6 spectrophotometer (37). There were no significant differences in rate or extent of collagen fi-
brillogenesis in the presence or absence of fibronectin between three pairs of preparations assayed over 30 minutes or two pairs of preparations
assayed over 20 seconds (inset).
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Fig. 5. Organic stains are not translocated by extracellular matrices in the absence of

translocatable particles. Eosine Y (a), alizarin (b), or methylene blue (c) were mixed with

primary gels lacking cells or beads, and formed contiguous with secondary gels containing
human plasma fibronectin (12.5 ~~.gIml). Photographs shown were taken after 20 minutes. In (e) a

primary gel containing alizarin also contained 6-kLm polystyrene latex beads. Arrowheads

indicate original position of primary-secondary gel interface. Scale bar, mm.

of charged particles in a heterogeneous
polymeric environment (19), an other-
wise conceivable mechanism in light of
potential differences in collagen fibril or-

ganization across the primary-secondary
gel boundary. A passive electrostatic
mechanism of this sort would promote
the redistribution of the neutral or anion-
ic dyes, as well as the 0.2-,um polysty-
rene latex particles (which have a larger
surface to mass ratio than the translocat-
able 6-,um particles of identical composi-
tion). It appears that the active process
promoting movement of cells or beads
and their associated matrices across the
boundary depends on several factors,
including native type I collagen fibrillo-
genesis, a disparity in an appropriate
fibronectin at the boundary, and the
presence on the fibronectin-free side of
particles of appropriate size and surface
characteristics (13).
The unidirectionality of cell and parti-

cle translocation in our system appears
to be due to the vectorial nature of the
fibronectin concentration disparity at the
gel interface. The penetration of the par-
ticle-containing matrix into the fibronec-
tin-containing matrix (Fig. Sd) suggests
that unidirectional translocation could
result from nonequilibrium processes
similar to those described for other poly-
meric systems (20). It is possible that
interaction of appropriate cells or parti-
cles with the interposed matrices results
in their mutual conveyance across the
boundary by the formation of similar
"dissipative structures" (21) in the sys-
tem described here (22).
The process that we have called ma-

trix-driven translocation is capable of
translocating living cells and nonliving
particles at high velocities; the effects
described here could potentially result in
major changes in cellular patterns in em-
bryos within minutes. Because different
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types of cells respond selectively in an

all-or-none fashion to matrices contain-
ing different types of fibronectin, this
effect appears to be a biophysical proc-
ess with biological discriminatory pow-
er.

We do not know whether matrix-driv-
en translocation plays a role in vivo or is
simply a novel chemimechanical proper-
ty of biological macromolecules. How-
ever, developing and adult organisms
could exploit this process for cellular
translocation by the construction of ma-
trices of appropriate composition. The
oriented translocation of cells during em-
bryogenesis (23-28), wound healing (29),
tumor invasion (30), and inflammation
(31) is poorly understood, and may, in
part, involve matrix-driven effects. Pri-
mary mesenchyme (23), mesenchyme of
the area vasculosa (32), primordial germ
cells (23), neural crest cells (32, 33), and
the invading mesenchymal cells of the
primary stroma of the developing cornea

(27, 28) migrate through fibronectin-rich
matrices during embryogenesis. It has
been proposed that these cells move

under their own power (2) by "contact
guidance" (34) on extracellular matrix
tracks. However, these processes could
also involve matrix-driven translocation.
This is particularly compatible with cas-

es such as the precartilage mesenchymal
condensations of the developing verte-
brate limb (26, 35, 36) in which fibronec-
tin-rich matrices also contain type I col-
lagen (38).
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High-Affinity Uptake of Serotonin into
Immunocytochemically Identified Astrocytes

Abstract. Primary cultures of astrocytes from neonatal rat brain were incubated
with tritiated serotonin. Afterfixation they were stained by immunofluorescence for
the astrocyte-specific marker glial fibrillary acidic protein and processed for
autoradiography. Silver grain density was increased over cells positive for glial
fibrillary acidic protein and was reduced to background levels when sodium was

omittedfrom the medium or the specific inhibitors ofserotonin uptakefluoxetine and
chlorimipramine were present. The results indicate that mammalian astrocytes can

take up serotonin by a sodium-dependent, high-affinity system previously thought to
be the exclusive property of serotonergic nerve endings.

The action of most neurotransmitters
released in the central nervous system is
thought to be terminated mainly through
reuptake by nerve endings (1). However,
many synapses are surrounded by astro-
cytic processes (2), which could also

serve as sites of uptake. Indeed, astro-
cytes have active systems for taking up
amino acid transmitters. Many of the
studies showing this were done with cul-
tured glial cells (3), but uptake of exoge-
nous labeled amino acids by astrocytes

Fig. 1. Glial fibrillary
acidic protein immu-
nofluorescence (A, C,
and E) and bright-
field autoradiography
of [3H]serotonin up-
take (B, D, and F) in
the presence of Na+

t. . t .i..:.-^i..(A to D) and in medi-
_ *sx .*** ........................*<X*,¢+; *f~ ¢ um in which Na+ was

replaced by choline+*;w 4s<t > i< w,Sv (E and F). The cells in
-: t t 0,t;.e '--(A) and (B) lack pro-

cesses and those in
(C) and (D) are proc-

ess-bearing. Primary
astrocyte cultures (5
weeks in culture)

V ......
were prepared from

s**e + * >, .ff, ,s +'';.+~VeAXfthe cerebral cortices
of newborn rat pups

wih10prcnftlafeu,supplementalvi i acfter removal of the
meninges (19). The
cells were grown on
pairs of glass cover
slips in 60-mm plastic
dishes (Corning) in
Eagle's basal medium

with 10 percent fetal calf serum, supplemental vitamins and amino acids, and penicillin and
streptomycin (19) and were used within 6 weeks. For combined a-utoradiography and immuno-
cytochemistry the growth medium was removed and the cells were washed three times in
buffered medium containing the following (in millimoles per liter): Na+ (145), K+ (4.5), Mg2+
(0.4), Ca2+ (1.3), Cl- (127), So2- (0.4); HCO (25), and glucose (10) (pH 7.4). The cells were
first incubated for 20 minutes in the same medium with 10-4M pargyline and 10-5M ascorbate
with additions or changes as indicated in a 5 percent CO2 and 95 percent air atmosphere at 37°C.
The cells were then incubated in 2 ml of the medium containing 0.3 ,uM [3H]serotonin (specific
activity, 9 to 23 Ci/mmol; Amersham) for a further 30 minutes. To stop uptake the cells were
rapidly washed seven times with 2 ml of ice-cold phosphate-buffered saline (PBS). The cells
were then fixed in 4 percent paraformaldehyde and 0.25 percent glutaraldehyde in O.IM
cacodylate buffer for 15 minutes at 0°C. The cover slips in the dish were then rinsed five times
with 2 ml of ice-cold PBS to remove the fixative, put into acetone at - 10°C for 3 minutes to
render their plasma membranes permeable to antibodies, and rinsed twice in PBS. They were
then incubated for 30 minutes with a 1: 200 dilution of monoclonal mouse antibody (immuno-
globulin G) to human GFAP (Amersham), rinsed three times in PBS, incubated for 30 minutes
with a 1:20 dilution of a rhodamine-labeled rabbit antibody to mouse immunoglobulin G, and
rinsed three times in PBS. The cover slips were mounted with Fluoromount on microscope
slides (cells facing up) and air-dried at 4°C overnight. The slides were dipped in Kodak NTB2 at
41°C, air-dried for I hour, and left at 4°C for 11 days. Then the slides were developed in Dektol
(1: 2 dilution) for 2 minutes, placed in I percent acetic acid for 30 seconds, fixed in Kodak fixer
for 4 minutes, and finally rinsed in three water baths for 5 minutes each. The cells were viewed
with a Nikon Labophot microscope with a x 50 oil-immersion lens, a xenon 75-W light source,
and appropriate filters for rhodamine epifluorescence. Controls in which antibody to GFAP was
absorbed with purified bovine GFAP showed no detectable fluorescence.

889




