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ABSTRACT
Motivation: CompuCell is a multi-model software framework
for simulation of the development of multicellular organisms
known as morphogenesis. It models the interaction of the gene
regulatory network with generic cellular mechanisms, such as
cell adhesion, division, haptotaxis and chemotaxis. A combin-
ation of a state automaton with stochastic local rules and a
set of differential equations, including subcellular ordinary dif-
ferential equations and extracellular reaction–diffusion partial
differential equations, model gene regulation. This automaton
in turn controls the differentiation of the cells, and cell–
cell and cell–extracellular matrix interactions that give rise to
cell rearrangements and pattern formation, e.g. mesenchymal
condensation. The cellular Potts model, a stochastic model
that accurately reproduces cell movement and rearrangement,
models cell dynamics. All these models couple in a controllable
way, resulting in a powerful and flexible computational envir-
onment for morphogenesis, which allows for simultaneous
incorporation of growth and spatial patterning.
Results: We use CompuCell to simulate the formation of the
skeletal architecture in the avian limb bud.
Availability: Binaries and source code for Microsoft Windows,
Linux and Solaris are available for download from http://
sourceforge.net/projects/compucell/
Contact: compucell@cse.nd.edu

1 INTRODUCTION
Our long-term goal is to simulate morphogenesis starting from
experimental measurements of gene regulatory networks, cell
and extracellular matrix (ECM) properties, and cell–cell and

∗To whom correspondence should be addressed.

cell–microenvironment interactions. Since genes and their
products determine the physical properties of tissues during
morphogenesis (Newman and Comper, 1990), useful compu-
tational models of multicellular development must describe, in
addition to differential regulation of gene activity, cell behavi-
ors such as release of diffusible factors, adhesion and motility
(Marée and Hogeweg, 2001).

CompuCell, provides such a computational framework.
Independent software modules simulate the interaction of the
gene regulatory network with cellular mechanisms; including
coupling between biosynthesis and diffusion of morphogens
(molecules released by cells that affect the behavior of other
cells during development), cell adhesion, haptotaxis (move-
ment of cells along a gradient of a molecule deposited on a
substrate) and chemotaxis (movement of cells along a gradi-
ent of a chemical diffusing in the extracellular environment).
The three main components of CompuCell are the cellular
Potts model (CPM) that describes cell and ECM behaviors,
a Reaction–Diffusion (RD) module that describes diffusible
morphogens and a combined ODE/state model of genetic reg-
ulatory networks and differentiation. We presented an early
version of CompuCell in Chaturvediet al. (2003).

The literature on modeling morphogenesis is extensive.
Held (2002) provides a good summary. Most current models
for morphogenesis are based on purely continuum approaches
or discrete cellular automata. CompuCell uses a combination
of the two.

Dillon and Othmer (1999) presented a purely continuum
model of early limb development. Here, reaction–advection–
diffusion between two organizing regions produces the
shape of the growing limb in two dimensions (2D). The
Navier–Stokes equations model growth. Disadvantages of this
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approach are the complex implementation required to handle
the moving boundary when solving the PDEs and instabilities
due to the advective term. Maini and coworkers have used
the moving finite element method to solve similar problems,
discussed, e.g. example, in Pageet al. (2001).

Marée (2000) among others has used cellular automata
like the CPM to model the development ofDictyostelium
discoideum. Recently, Merkset al. (2003) have used a com-
bination of lattice-gas automata, advection–diffusion and a
discrete model of branching to model coral reef growth. These
studies validate the CPM approach that we use in CompuCell.
Work by Upadhyaya (2000) also contains data validating
the CPM.

We use the CPM to model cell dynamics. Continuum mod-
els of cells are also available. For example, Drury and Dembo
(2001) have used a continuum model with a finite element
discretization to model human neutrophils.

CompuCell can model a genetic regulatory network of
arbitrary complexity. Data on such networks are available
in studies that focus on the biochemical reactions inside
individual cells. Arkinet al. (1998) and McAdams and Arkin
(1999) have modeled genetic regulatory and metabolic net-
works in detail. They analyze the network of metabolic and
genetic reactions governing cellular development and apply
principles of control systems to predict cell behavior and
differentiation in response to internal and external signals.
Simulations taking such models into account would be a
fruitful extension of the present work.

We illustrate the CompuCell framework by simulating
the formation of skeletal architecture in the avian limb
bud, a classical model of tissue growth, differentiation and
patterning.

2 SYSTEMS AND METHODS
2.1 The CPM: cell and tissue growth and

movement
We model tissue growth and movement using the CPM
(Graner and Glazier, 1992). The CPM has two specific fea-
tures that differ from most other models of cellular dynamics.
It is a cell level model, describing individual generalized
cells (which may be real cells, ECM, medium, etc.) as spa-
tially extended objects. Hence, it is potentially more accurate
than continuum models or models which treat cells as point
particles. It incorporates phenomenologically observed cell
behaviors using mathematical constraints, and expressing
these constraints as terms in the overall effective energy of the
tissue,E. From a mathematical point of view, we can portray
any repeatable behavior of a cell in the form of a response
consistent with a constraint. Divergence from the correct
response exacts an ‘energy penalty’. The chosen dynamics
reduces the penalty, gradually relaxing the pattern to one
consistent with the constraint. While the representation of

phenomena like chemotaxis, cell polarity or mitosis as con-
straints is non-obvious, the method has the great advantage
that we can introduce additional mechanisms into the model
in a straightforward manner by adding additional constraints.

The original CPM drew on the differential adhesion hypo-
thesis (Steinberg, 1998) to quantitatively reproduce cell
movement and rearrangement based on the minimization of
cell–cell surface interaction energy (Mombachet al., 1995).
Our extended model includes terms that provide for the
haptotactic or chemotactic response of cells to gradients of
soluble or bound morphogens in the extracellular space.

The CPM is easier to implement, though somewhat slower,
than continuum models. For example, consider reaction–
advection–diffusion of morphogens in the extracellular space.
Implementing advection with continuum models has numer-
ical pitfalls. If we model motions of cells, intracellular
medium and ECM using the CPM, we have to deal only
with reaction and/or diffusion of morphogens when discret-
izing the partial differential equations. Theoretically, we can
even model reaction and diffusion using cellular automata like
the CPM.

The CPM minimizes the effective energyE in the dissip-
ative limit according to Metropolis Monte Carlo dynamics.
Cells rearrange into thermodynamically favorable configura-
tions. One weakness of the CPM is that dissipation results
from the dynamics and is not introduced explicitly.

We implement the CPM by superimposing a lattice on the
cells. Each lattice site (also called a pixel) has an associ-
ated index (also called a spin in the literature). The value of
the index at a lattice site isσ if the site lies in cellσ . All sites
with indexσ theoretically belong to the same cell. The prob-
ability that all such sites connect is high since disconnected
domains induce an energy penalty, cf. Equations (1) and (2).

We describe the net interaction between two cell membranes
by a binding energy per unit area,Jτ ,τ ′ . Hereτ , τ ′ are the
types of the cells on either end of the link connecting sites
with dissimilar indices. The contact energy is thus:

EContact=
∑

pixelsσ ,σ ′adjacent

Jτ(σ),τ(σ ′). (1)

While the absolute values ofJτ ,τ ′ do not change the equilib-
rium configurations, the relative strength of the bonds does.
The choice of the zero-point of the energy, however, does have
subtle effects, e.g. on diffusion constants (Upadhyaya, 2000),
which are not relevant to our simple example.

At any timet , a 2D cell of typeτ has a surface areas(σ , τ).
Equation (2) penalizes a cell’s variation ins from its target
value.

Earea=
∑

all-cells

λ[s(σ , t) − starget(σ , t)]2. (2)

An additional constraint can regulate cell perimeter. In
3D, corresponding terms can be written for volume and
surface area.
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To model the growth of a cell, a separate sub-model gov-
erns the increase ofstarget(σ , τ) with time. To incorporate cell
division we start with a cell of average size and let it grow
until it doubles in size, at which point we split the cell into
two daughters. We assign each daughter cell a unique spinσ .
We can model cell death by settingstarget(σ , τ) in Equation (2)
to zero.

Chemotaxis or haptotaxis requires additional fields to
describe the concentrationsC(�x) of the signaling molecules.
The equations for the evolution of these fields depend on
the particular molecule. The CPM formalism models the
chemotactic or haptotactic response of cells by introducing
an effective chemical energy,EChemical, with effective chem-
ical potentialµ(σ), resulting in the cell executing a biased
motion along the gradient ofC(�x).

EChemical= µ(σ)C(�x). (3)

Again, Equation (3) represents a significant simplification
of the biology. It assumes that the velocity of the cell
in response to a gradient is independent of the concentration
and that the cell does not adapt to external stimuli. We can
incorporate such phenomena by makingµ(σ) time depend-
ent and including more complex dependences onC and its
gradient.

In the model, an effective temperatureT drives cell mem-
brane fluctuations. If a proposed change in configuration (i.e.
change in the spins associated with sites of the lattice) pro-
duces a variation in effective energy,�E, we accept it with
probability:

P(�E) = min(1, e−�E/kT ), (4)

where k is a constant convertingT into units of energy.
Again, this form represents a simplification of the biology.
Cells move due to complex mechanical structures, e.g. a lead-
ing edge. These may show fluctuations with non-Boltzmann
spectra and long time correlations. We could introduce such
behaviors explicitly by changing the functional form of
Equation (4) or by using explicit constraints that take into
account these correlations. We can also incorporate dissip-
ative effects due to the mechanical rigidity of the cells or
ECM into Equation (4). Marée (2000) and Glazier and Graner
(1993) contain suggestions on how to choose parameters for
the CPM.

2.2 Pattern formation
We use a system of reaction–diffusion PDEs to model the
spatial patterning of morphogens (Turing, 1952; Meinhardt
and Gierer, 2000; Newman and Frisch, 1979). For further
discussion of other models of pattern formation see Gilbert
(1997).

2.3 Cell differentiation
Cells may respond to morphogens produced by them or
their neighbors produce by altering their genetic activity in

continuous or discontinuous (switch-like) fashion. Such non-
linear feedback loops can lead to differentiation of cells.
We consider that the network of expressed genes and their
products embodies a set of rules for cells that governs their
growth, division, secretion of morphogens and strength of
adhesion. These rules depend on the state of several chemical
fields at the intra- and inter-cellular level that we model by
differential equations applying them in the appropriate spa-
tial domains. Our formalism specifies alternative cell types
and rules that govern transitions between them. This model of
gene regulation captures formal, qualitative aspects of regulat-
ory interactions and allows fitting to outcomes of quantitative
experiments. Other approaches to modeling gene regulatory
networks are possible (e.g. Arkinet al., 1998; Jong, 2002).

3 SOFTWARE
CompuCell is an open-source object-oriented framework
available in Source Forge (http://sourceforge.net/projects/
compucell/). It has the following components: (i) base
classes describing the main abstractions of morphogen-
esis, namely cells, chemical fields and spatial/temporal
domains; (ii) energy functions and algorithms for the CPM
simulation model; (iii) RD and diffusion solvers, includ-
ing finite difference and finite element discretizations; (iv)
cell differentiation models, including an ODE solver and
cell type automata; (v) a cross-platform GUI based on the
Fox toolkit (http://www.fox-toolkit.org/); (vi) an XML-based
front-end (http://xml.apache.org/xerces-c/index.html); and
(vii) VTK (http://public.kitware.com/VTK/get-software.php),
OpenGL (http://www.opengl.org/) or VRML (http://www.
vrmlsite.com/) visualization toolkits, with support for
Phantom haptic interfaces (http://www.sensable.com/).

We specify the computational model using XML configur-
ation files containing simulation parameters and their values
in pairs, a visualization file (optional), and a Potts initial
file to allow an arbitrary initial cell distribution. Optionally,
CompuCell can initialize the cell distribution in the lattice to
be uniform or random.

Each CompuCell simulation requires a cell model declara-
tion. Cell models describe one or more cell differentiation
types and the state variables associated with each cell type.
We can define additional differentiation events such as
Algorithm (4).

The overall algorithm is Algorithm (1). Each step of the
CPM consists of Algorithms (2) and (3). The cell differentia-
tion step is user-defined. In our example, it takes the form of
Algorithm (4).

3.1 Performance data
Table 1 presents data for a Sun Blade 1000 with a 900 MHz
CPU and 512 MB of memory. For the same grid size, the
number of cells does not much affect the speed. Thus, the
algorithms scale for quantities dependent on the number
of cells.
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Algorithm 1: Main loop of CompuCell

For total number of combined steps do
Solve RD (Equation (5))
SolveN steps of the CPM (Algorithm 2)
Solve cell state ODEs
Do cell differentiation
Grow domains for RD and CPM

end

Algorithm 2: Cellular Potts model

For number of grid points in Potts lattice do
ComputeEold according to Equations (1)–(3)
Attempt substitution of random pixel by a neighbor
ComputeEnew according to Equations (1)–(3)
Apply Metropolis criterion, Equation (4)
If cell is growing, attempt division (Algorithm 3)

end

Algorithm 3: Cell division

Breadth-first search do
Start from selected cell boundary pixel
Keep track of visited pixels
Keep track of neighbors awaiting processing
Ignore pixels outside dividing cell

end
If Starget pixels are in list of visited pixels then

rename them as a new cell

Algorithm 4: Example of cell differentiation

If cell type is non condensing
and activator concentration> threshold then

cell type := condensing
haptotaxis to SAM := on
SAM production := on

end

Table 1. Runtimes for different grid sizes and numbers of cells on a Sun
Blade 1000 with a 900 MHz CPU and 512 MB of memory

Grid Size Number
of cells

Cell
density
(%)

Total
iterations

Simulation
(visualization
excluded) time (min)

150× 150 100 64 700 2.5
300× 300 900 64 700 6
600× 600 900 64 700 18
150× 150 325 52 700 3.5

Fig. 1. Schematic representation of a developing vertebrate limb:
The three major axes are indicated, as are the first two tiers of skeletal
elements to form. In the chicken forelimb these are the humerus,
shown as already differentiated (dark gray), followed by the radius
and ulna, which are in the process of forming (light gray). Still to
form are the wrist bones and digits. The apical ectodermal ridge runs
along the distal tip of the limb approximately between the two points
intersected by the arrow indicating the AP axis.

4 EXAMPLE: LIMB DEVELOPMENT
In this section, we discuss the biology of skeletal patterning
in chick limb and the specific assumptions and simplifications
we make in our CompuCell simulation.

Our 2D simulation of chick limb morphogenesis generates
the arrangement of bones in a forelimb, viewed palm down
on a flat surface. In Figure 1 the long axis is proximodistal
(PD). The anteroposterior (AP) direction runs from thumb
to little finger. The dorsoventral (DV) direction traverses the
limb from the back to front. Because the number of elements
along the dorsoventral axis does not change during normal
development of the vertebrate limb (it always remains one
skeletal element in thickness), a 2D representation captures
the key patterns seen in Figure 1. However, asymmetry along
the dorsoventral axis is important for the functioning of the
limb. A complete model of limb development must eventually
include all three dimensions.

In the chicken, as in all vertebrates, skeletal pattern forma-
tion occurs within tissue surrounded by a thin bounding layer
of ectoderm. We neglect this separate structure in these initial
simulations. However, the apical ectodermal ridge (AER), a
narrow strip of ectoderm running along the apex (distal bound-
ary) of the growing limb bud in the anteroposterior direction,
is necessary for elongation and patterning of the limb, and is
part of the model. The AER releases fibroblast growth factors
(FGFs) which control cell division and production of other
morphogens.

Experiments suggest that in limb growth and patterning, the
space within the developing limb consists of three zones—an
apical zone where only growth takes place, anactive zone in
which cells rearrange locally into precartilage condensations
and a frozen zone in which condensations have progressed
to differentiated cartilage and no additional patterning takes
place. Later, bone replaces the cartilaginous skeleton iso-
morphically in species with a bony skeleton. Growth continues
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in both active and frozen zones. The exact definitions and
nature of these zones are still being debated (Dudleyet al.,
2002; Saunders, 2002; Wolpert, 2002). Each zone has distinct
dynamics governing the evolution of cells and of morphogens
in the extracellular space. The zones themselves grow and
their interfaces move distally.

Both experiment and theory suggest that in the active
zone one or more members of the TGF-β family of growth
factors acts as an activating RD morphogen (Newman, 1988;
Newmanet al., 1988; Leonardet al., 1991). We also assume,
following recent experiments (Moftahet al., 2002), that
sites of incipient condensation release a laterally inhibitory
morphogen, a necessary component of most RD schemes
(Meinhardt and Gierer, 2000).

Dillon and Othmer (1999) proposed that reaction–
advection–diffusion of a growth factor produced in the AER
and the morphogen Sonic Hedgehog produced in the zone of
polarizing activity (ZPA) at the posterior margin of the bud
shape the early limb bud. The ZPA influences the shaping
of limb bud and the AP identity of the cells. Wolpert (2002)
proposed ‘progress zone’ and ‘positional information’ mod-
els in which the number of divisions a cell undergoes while
in the apical zone controls differentiation of cells in the PD
direction, and a chemical gradient with its source at the ZPA
provides the cells with information of AP identity.

CompuCell can simulate these as well as other models. In
our example, we assume that cell division is uniform through-
out all zones of the limb bud (cf. Lewis, 1975; Bowenet al.,
1989). New cells form by division, replenishing the active
zone as the limb bud grows. As more and more cells con-
dense into a bonelike pattern, the proximal frozen zone grows
as well.

In our model, spatiotemporal patterns of the activating
morphogen, established as a result of RD, induce a corres-
ponding set of cell condensations as follows: cells that sense
a threshold level of the signal produce and secrete an adhesive
substratum and also increase their adhesion to one another. In
the actual limb, TGF-β induces cells in the active zone to pro-
duce the ECM glycoprotein fibronectin. Fibronectin adheres
to the cell surface and causes cells to accumulate at focal
sites (Frenzet al., 1989a,b). Cells at these sites also pro-
duce the cell-surface adhesion protein N-cadherin, causing
them to adhere more strongly to each other (Oberlender and
Tuan, 1994). We call the secreted substrate adhesion molecule
that promotes haptotaxis SAM, and the cell–cell adhesion
molecule CAM. For simplicity, we do not include the feed-
back of the cells on the morphogen fields due to absorption,
secretion and changes in cell boundaries.

4.1 Mathematical model
Our mathematical model of limb bud growth and pattern form-
ation includes the following submodels. Table 2 gives values
for the parameters in these equations.

Table 2. Parameter values for the chicken limb simulation

Parameter Value

Jcell,cell Jcondensing,condensing= 0.5
Jnon_condensing,any_cell= 7.0
Jmedium,any_cell= 0.2

λ 3
Starget, in the absence of cell growth 16
µ, for cells in condensing state 25
SAM production rate 0.005 units/step

T 7.0
a 0.017
b 1.015
d 7.1
Grid for RD 100 by 300,

�x = �y = 0.01,
�t = 2E − 6

γ (y) 80, if y < 100
200, if y < 200
800, otherwise

Ratio of domain growth for
RD : Potts

1 : 1

Ratio of iterations of CPM : RD in a
compute cycle

1 : 5.0

‘Mitosis doubling time’ (growth rate
for growing cells)

85 Monte Carlo iterations
for the cell volume to
double

Target cell density 60%

(1) Condensation of cells due to differential adhesion,
growth and division of cells and cell haptotaxis in response to
SAM using the CPM (Sections 2.1 and 2.3). For our sample
simulation, initially all cells in the active zone are mitosing
and not condensing (i.e. dividing and not producing SAM
or responding haptotactically to SAM). These cells obey the
CPM dynamics of Equations (1)–(4). When a cell in this state
in the active zone senses a threshold local concentration of
the activator (currently 0.75) it enters the condensing state, in
which it produces SAM and starts responding haptotactically
to SAM. The cell also starts to upregulate cell–cell adhesion
(decreasing the parameterJcell,cell in the CPM from 7.0 to 0.5).
A numerically determined mitosis doubling time (number of
iterations required for the cell to reach twice the average size
and divide) of 85 steps (for the zone growth rate mentioned
above) gives the desired cell density of 64% throughout the
simulation.

(2) Formation of skeletal pre-patterns of activating signal via
RD PDEs (Section 2.2). We use the Schnakenberg equations
following Murray (1993):

∂u

∂t
= γ (a − u + u2v) + ∇2u,

∂v

∂t
= γ (b − u2v) + d∇2v.

(5)
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Here,u is the activator concentration at location(x,y) and
time t andv is the inhibitor concentration.γ is a parameter
that affects the wavelength of the activator pattern.

We use a finite difference discretization in space with a
forward Euler scheme for time. The domain moves in time,
and we use no flux boundary conditions.

We choose solver parameters,�x = �y = 0.01,
�t = 2E − 6, to satisfy the standard stability criterion
d�t/ min[(�x)2, (�y)2] < 1/4. These parameters are inde-
pendent of those in the CPM. The parameterγ (y) controls the
periodicity of the prepattern in they direction.

(3) Cell differentiation using individual cell gene network
ODEs and discrete rules (Section 2.3). Our limb simulation
includes three types of cells: condensing, non-condensing and
medium.

(4) Integration of submodels. We must integrate the sub-
models, particularly the stochastic CPM with continuum
reaction–diffusion to allow the various mechanisms to work
in a coordinated fashion:

(4.1) We match the spatial grid for continuum and
stochastic models by interpolating the coarser spatial grid used
in the explicit solution of the discretized reaction–diffusion
equations to the discrete grid of the CPM. For example, in
our simulation the RD domain is four times coarser than the
domain for the CPM.

(4.2) We define the relative number of iterations for the RD
and CPM evolvers. Diffusion, and hence establishment of the
morphogen distributions, is rapid compared with growth for
small domains. The time scales of these processes, however,
become more comparable as outgrowth proceeds (cf. Dillon
and Othmer, 1999, p. 310). Throughout, the domain for RD
grows faster than that for CPM. The ratio of these growth rates
is 1 : 1. We use a ratio of 50 iterations of RD for each CPM
iteration.

(4.3) To control cell density in the active zone where
cells divide and grow, we must balance the mitosis rate and
the domain growth rate appropriately. We determined the
parameters empirically.

4.2 Simulation results
Figure 2 shows a simulation of our model of limb forma-
tion. Cells cluster subject to haptotaxis and differential cell
adhesion. The genetically governed response of cells to high
activator concentration is to begin secreting SAM. Cells
respond to SAM in two ways: (1) SAM causes cells to stick to
the substrate; (2) SAM makes the cells more likely to condense
by upregulating cell–cell adhesion. The activator concentra-
tion obeys the Schnakenberg RD equations (Section 3.2). An
appropriate choice of control parameters gives the required
pattern periodicity. The far right window shows the activ-
ator concentration; the pre-pattern directing the later cell
condensation into the typical chondrogenic pattern is clear.
The middle window represents the SAM concentration. Since
cells exposed at some time to high activator concentration

begin and continue to secrete SAM, and SAM in turn has
the two effects described above, the SAM concentration pat-
tern resembles the activator pre-pattern (Zenget al., 2003).
Finally, the cells condense into the bone pattern of 1+ 2+ 3
(where 3 corresponds to the three digits), shown in the left
window.

The growth of the limb bud is not predefined. It depends
on the cell division rate and how fast the cells can move.
New cells generated by cell division push the limb tip
upward. Thus growth occurs naturally. The computational
domain corresponds to realistic values: 1.4 mm for the antero-
posterior width; patterning begins at stage 20 of chicken
embryo development. The proximo-distal dimension at stage
28 is 4 mm; about three times the width. A 100× 300 grid
covers the domain. This simulation ran in 93 min using
a SunBlade 1000 with a 900 MHz CPU and 512 MB of
memory.

5 DISCUSSION
The approach presented in this paper exploits the compu-
tational advantages of a continuum RD or simple diffusion
formulation, while incorporating motion and advection of
cells and of the viscous fluid medium through the CPM form-
alism. The detailed handling of cells and cellular dynamics
allows fitting to more detailed biological and biophysical data.

This work has barely touched the modeling of the genetic
regulatory network. Though CompuCell can model gene
networks of any complexity, our sample simulations used a
simplified model of cell differentiation.

Different constraints and limitations of our morphogen-
esis model are conceptual, model related or implementation
related. The primary conceptual limitation is that relaxation
to energy minima may not represent the biology. Limit-
ations of the model are: (i) the model of growth is too
simple, since it assumes that we know a priori the shape as
a function of time: a model like that of Dillon and Othmer
(1999) would be preferable; (ii) the CPM has many para-
meters; experiment can determine some but others require
simulation tuning; (iii) RD is only one possible develop-
mental pattern forming mechanism and simple diffusion or
more complex genetic control may be more appropriate; and
(iv) our model of cell differentiation comes from focused
experimental studies to determine the key molecular com-
ponents; extracting such knowledge from microarrays in a
more automated way would complement these methods and
increase their generality. Implementation related constraints
are: (i) we do not include feedback from the cell on the PDE
and (ii) we do not have an adaptive time step control for the
relative speeds of growth and diffusion, which change during
the simulation.

Despite these limitations, our model of limb development
provides a framework which integrates a subcellular descrip-
tion of genetic regulation (in the form of ODEs and rules)
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(a)Initial distribution (b)Developing limb bud 

(c)Developing limb bud (d)Fully patterned limb  

Fig. 2. Simulation of skeletal pattern formation in avian limb using CompuCell. For full limb, height to width ratio is 3 : 1. Figure not to
scale (a) Initial distribution, (b) Developing limb bud, (c) Developing limb bud (d) Fully patterened limb.

with continuum and discrete models of spatial patterning and
growth. The model allows fitting to experiments: (i) we can
compare fate maps for cell tracking experiments and simula-
tions; (ii) experiments measuring surface tensions in tissues
can determine the contact energies in the CPM; (iii) we can
compare gene expression experiments to the simulated gene
expression; (iv) we can use experimental shapes as input to
the model by providing a history of the domain over which
we solve Equations (1)–(5), or we can compare experiments
to models that attempt to produce the shapes themselves; and

(v) we can compare experiments on chondrogenesisin vitro
andin vivo to simulated patterns.

In our current extensions to this work, we are develop-
ing biologically authentic equations for the skeletogenesis
example, extending the code to 3D, modeling of realistic
geometries and including more detailed gene expression
networks.

Related software developed by other groups includes
Cytoscape (http://www.cytoscape.org/), which provides a
framework to construct molecular interaction networks and
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to integrate these networks with gene expression profiles and
other state data; Virtual Cell (http://www.nrcam.uchc.edu/)
models intracellular processes; Cello (http://mbi.dkfz-
heidelberg.de/mbi/research/cellsim/cello/index.html) simu-
lates tissues and cells; and E-Cell (http://ecell.sourceforge.
net), which simulates cells and also has a powerful modeling,
analysis and simulation environment. CompuCell provides
modeling capabilities that are more comprehensive, and in
many cases complementary to these programs.
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