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a b s t r a c t

We present a mathematical model for the morphogenesis and patterning of the mesenchymal condensa-
tions that serve as primordia of the avian limb skeleton. The model is based on the experimentally
established dynamics of a multiscale regulatory network consisting of two glycan-binding proteins
expressed early in limb development: CG (chicken galectin)-1A, CG-8 and their counterreceptors that
determine the formation, size, number and spacing of the “protocondensations” that give rise to the
condensations and subsequently the cartilaginous elements that serve as the templates of the bones. The
model, a system of partial differential and integro-differential equations containing a flux term to represent
local adhesion gradients, is simulated in a “full” and a “reduced” form to confirm that the system has
pattern-forming capabilities and to explore the nature of the patterning instability. The full model
recapitulates qualitatively and quantitatively the experimental results of network perturbation and leads
to new predictions, which are verified by further experimentation. The reduced model is used to
demonstrate that the patterning process is inherently morphodynamic, with cell motility being intrinsic
to it. Furthermore, subtle relationships between cell movement and the positive and negative interactions
between the morphogens produce regular patterns without the requirement for activators and inhibitors
with widely separated diffusion coefficients. The described mechanism thus represents an extension of the
category of activator–inhibitor processes capable of generating biological patterns with repetitive elements
beyond the morphostatic mechanisms of the Turing/Gierer–Meinhardt type.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The organization of cells and tissues into specific arrangements
or patterns during embryogenesis, and the inheritance of these

pattern-forming mechanisms, constitute important problems of
both developmental and evolutionary biology (Müller et al., 2007).
The patterning of the skeletal elements in vertebrate limbs is an
experimental system within which these issues have received
particular attention (Newman and Bhat, 2007).

The quasi-periodic arrangement of limb bones is well con-
served across the tetrapods and consists of a progressive increase
in element number along the proximal–distal axis (Saunders,
1948). Each skeletal element is preceded by a cartilage element,
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which in turn arises from condensations of limb mesenchymal
cells (Hall and Miyake, 2000). The condensation of mesenchymal
cells can also be observed in vitro in high-density micromass
cultures. When precartilage mesenchymal cells are isolated from a
developing chicken limb, dissociated and cultured at high densi-
ties on tissue culture plastic in serum-free conditions, they
organize themselves into spot- or rod-like condensations of nearly
uniform size and regularity of spacing surrounded by non-
aggregated cells (Downie and Newman, 1994; Kiskowski et al.,
2004; Christley et al., 2007). When packed into a limb bud
ectodermal jacket the cells generate poorly formed, though dis-
crete cartilaginous elements (Ros et al., 1994; Zwilling, 1964).

Aggregation results from random movement of cells occurring
in an environment with local patches of increased adhesivity
characterized by elevated levels of extracellular matrix (ECM)
and adhesion molecules such as N-cadherin, NCAM, tenascin and
fibronectin (Downie and Newman, 1995; Newman and Bhat,
2007). The determination of where the condensations form and
where they do not, which determines the ultimate pattern of the
skeleton, has proved to be a more difficult question.

The finding that regularly spaced condensations form from
randomized cells in vitro, suggests that the mechanism of skeletal
patterning is not dependent on stable gradients of diffusible
molecules emanating from signaling centers as has been proposed
in the form of the “positional information” hypothesis (Wolpert,
1969, 1989). Indeed, individual-based simulations of micromass
cultures under experimentally constrained conditions (Kiskowski
et al., 2004; Christley et al., 2007), analysis of the peculiarities of
the limb skeletal patterns in certain mutant chicken embryos
(Miura et al., 2006), and recently, examination of the response of
skeletal pattern generation in mouse embryos in which Hox gene
expression was manipulated in a semi-quantitative fashion (Sheth
et al., 2012), all point to the underlying core mechanism of
skeletogenesis being a reaction–diffusion-like process, as sug-
gested earlier by Newman and Frisch (1979). This category of
mechanism was originally discussed in chemical terms by Turing
(1952), and in a biological context by Gierer and Meinhardt (1972),
who characterized it as local autoactivation–lateral inhibition
(LALI) (see Meinhardt and Gierer, 2000). The observation that
the ECM molecule fibronectin is an important component of the
condensation-associated adhesive patches and that one or more
members of the TGF-β family of positively autoregulatory morpho-
gens induces its synthesis, motivated mathematical and computa-
tional models of in vivo (Hentschel et al., 2004) and in vitro
(Kiskowski et al., 2004; Christley et al., 2007) pattern formation,
utilizing LALI mechanisms. (For exhaustive reviews on the math-
ematical models of limb pattern formation see Glimm et al., 2012;
Newman et al., 2008; Zhang et al., 2013.)

The most general formulation of a Turing-type patterning process
in limb bud mesenchyme is “morphodynamic” (in the sense of
Salazar-Ciudad et al., 2003, in which cell–cell signaling and cell
movement occur simultaneously), see Hentschel et al. (2004),
Kiskowski et al. (2004) and Christley et al. (2007). However such a
system is prohibitive to simulate in realistic geometries and thus a
“morphostatic” approximation (where establishment of a stable
“prepattern” of cell signals occurs on a faster time scale than cell
movement, see Salazar-Ciudad et al., 2003) of the activator–inhibitor
morphogen dynamics based on certain restrictive biological and
mathematical assumptions (Alber et al., 2008) was used to explore
some of its experimental, mutational and evolutionary properties
(Zhu et al., 2010). It is unclear, however, to what extent this morpho-
static assumption is justified in the developmental context. More-
over, the molecular identity of the putative LALI inhibitor in the TGF-
β-fibronectin network has been elusive (Newman and Bhat, 2007).

Recently, in an attempt to clarify the identities of early acting
determinants of precartilage condensations, Bhat et al. (2011)

showed that two members of a class of glycan-binding proteins
called galectins appear at the sites of prospective condensation in
the developing chicken limb before any previously described
condensation mediators such as fibronectin. These galectins are
CG (chicken galectin)-1A and CG-8 (see also Lorda-Diez et al.,
2011). Ectopic CG-1A induced supernumerary condensation for-
mation in vitro and digit formation in vivo, both of which were
inhibited by CG-8. What distinguishes the interaction of these
gene products from other experimentally elucidated LALI net-
works is a mutually positive feedback loop exerted by the proteins
on each other's gene expression with the inhibitory effect exerted
at a different biological level, protein–protein interaction (Bhat
et al., 2011). In addition, CG-1A induces the expression of a shared
counterreceptor. (A more detailed review is given in Section 2.1.)
A relevant question is whether the demonstrated interactions
were sufficient to give rise to the characteristic condensation
pattern or if additional components or interactions are required.

The purpose of this paper is to construct a mathematical model
that incorporates the interactions of CG-1A and CG-8 multilevel
regulatory network to explore their ability to form spatial patterns
of condensations. We verify that this mathematical model does
indeed reproduce the experimental findings, and in the process,
gives rise to a condensation-like pattern. The model provides
additional crucial insights into the pattern formation from a physical
perspective: we show that the limb skeletal patterning is a
morphodynamic process (as opposed to morphostatic one) and is
thus dependent on mesenchymal cell motility. We also confirm the
predictive potential of the model by verifying experimentally an
important in silico finding: that abrogation in the interaction of both
chicken galectins to their counterreceptors results in loss of pattern
formation. A number of explicit predictions of the model for further
experimental tests are listed in Section 5 at the end of this paper.

The mathematical model and its experimental validation
described below establish a novel “dynamical patterning module”
(Newman and Bhat, 2008), a LALI-type mechanism for which cell
movement is an intrinsic component. This mechanism underlies
spatial patterning of the avian limb skeleton, but may also be
relevant to the generation of other spot-like or rod-like biological
patterns in animal development.

2. Materials and methods

2.1. Developmental model

In this section we present the key biological findings that we
implement in our mathematical model in order to test their ability
to give rise to spatial patterns characteristic of precartilage con-
densations in culture.

Biological assumptions motivated by the experimental findings:

1. Limb mesenchymal cells move randomly with a constant
diffusion rate unless their surface adhesive properties change.

2. All cells produce CG-1A, CG-8 and their respective counterreceptors.
3. CG-1A induces CG-8 gene expression; CG-8 induces CG-1A

gene expression.
4. CG-1A induces enhanced binding activity of the shared coun-

terreceptor, presumably via upregulation of protein expression
of the shared counterreceptor.

5. CG-1A promotes cell–cell adhesion in a cellular suspension in
the order of minutes.

6. Cell movement continues but becomes confined within
condensations.

Detailed experimental justifications for these biological assump-
tions are presented by Bhat et al. (2011). The following assertions
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also come directly from experimental findings. But in contrast to
the list above, instead of being explicitly incorporated in the model
they are empirically valid outcomes that follow from the modeling
assumptions (see Section 4.2). The following are thus “outputs”
rather than “inputs” of the model.):

1. CG-1A and CG-8 are elevated in expression at prospective sites
of condensation1 in culture and in vivo.

2. CG-8 inhibits the cell–cell adhesion induced by CG-1A.
3. CG-1A promotes the formation of condensations: If CG-1A is added

to cultures, condensation number and density increase (Fig. 1B).
4. CG-8 antagonizes the patterning of condensations: If CG-8 is

added to cultures, condensation number and density decrease
(Fig. 1C).

The exact molecular identity of the counterreceptors is pre-
sently not known; however, the extremely short time-scale of the
adhesion inducing effects of CG-1A, and the inhibition by CG-8 of
CG-1A-induced adhesion suggests that the two galectins have a
common counterreceptor in addition to any unique ones. Corre-
spondingly, the inhibition by CG-8 of condensations may thus be
due to competition for binding to the shared counterreceptor with
CG-1A. CG-8 is a tandem-repeat galectin and has two dissimilar
CRDs with affinities to two different glycan moieties. Therefore
CG-8 has at least two different counterreceptors. For simplicity we
assume that there are two, and refer to them as the unique CG-8
counterreceptor and the shared (with CG-1A) counterreceptor. The
unique CG-8 counterreceptor will also simply be referred to as
“the CG-8 counterreceptor”, and the shared counterreceptor will
also be referred to as “the CG-1A counterreceptor” or “CG-1A's
counterreceptors”, even though CG-8 can bind to it as well. CG-1A
may also have a unique counterreceptor, but since experiments in
this system do not provide any evidence for or against this, we will
not consider it further in the models.

Studies carried out on the vertebrate homologs of CG-1A in
other systems indicate that it has both intracellular and extracel-
lular functions in different contexts (Gabius, 2009). Given the short
time course of the cell suspension aggregation experiments, it is a
reasonable assumption that the two galectins act extracellularly
with regard to mediation of condensation. We thus assume that
they diffuse through the extracellular space and exert their pattern-
ing effects through their membrane-bound counterreceptors.

Further, we assume that it is through binding of CG-1A to its
(shared) counterreceptor that the former enhances expression of
its counterreceptor and of CG-8 and that the binding of CG-8 to its
unique counterreceptor enhances expression of CG-1A; and finally,
binding of CG-8 to the shared counterreceptor has no regulatory
effect (other than the indirect one of making the binding site
inaccessible to CG-1A). We also assume that in contrast to the case
with CG-1A, the binding of CG-8 to either of its counterreceptors
has no effect on their expression. The regulatory effects of the
binding of a galectin to a counterreceptor are summarized in Fig. 2.

2.2. Experimental background

Materials and methods pertaining to the experimental model,
i.e., limb mesenchymal micromass cultures, are elaborated in
detail by Bhat et al. (2011). The following is a brief summary of
the relevant procedures. Briefly, myoblast-free precartilage mesen-
chymal tissue was dissected from the distal 0.3 mm of Hamburger
and Hamilton (1951) stage 24 leg or wing buds of 5-day fertilized
White Leghorn chicken embryos (Moyer's Chicks, Quakertown, PA)
(Downie and Newman, 1994, 1995; Frenz et al., 1989a, 1989b). The
cells were dissociated using TrypLE express solution (Gibco, Grand
Island, NY) filtered through Nytex 20 μm monofilament nylon
mesh (Tetco, Briarcliff Manor, NY), and cultured in serum-free
medium at 2.5�105 cells per 10 μl spot.

Fig. 1. Images of chondrogenic condensation patterns of leg cultures for three cases: control (a); added CG-1A (b); and added CG-8 (c). Note that the addition of CG-1A
causes increased condensation numbers, with concomitant decrease in size as compared to the control; addition of CG-8 causes fewer condensations, with concomitant
decrease in size.

Fig. 2. Schematic representation of the galectin regulatory network: Left: graphical representation of matrix-bound galectins and their cell membrane-bound
counterreceptors; right: schematic representation of the “minimal” regulatory network described in the text: the effects of galectins binding to counterreceptors.
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2.3. Mathematical model

2.3.1. Variables and notation
In this section, we describe the complete mathematical model

of the pattern formation mechanism. The model is based on the
developmental model described in Section 2.1, specifically as
summarized in Fig. 2.

The relevant variables are the cell densities, the concentrations
of the counterreceptors, the concentrations of the freely diffusing
galectins and those bound to their counterreceptors. Table 1 lists
the variables and summarizes our notations.

Note that we have introduced morphogenetic density R as a
generalized cell density depending on several variables repre-
senting various chemical concentrations besides time and space.
A proper mathematical viewpoint is that Rðt; x; c1; c88; c18;ℓ1;ℓ8Þ
dx dc1 dc

8
8 dc

1
8 dℓ1 dℓ8 is a time-dependent measure on the space

Rn � ðRþ
0 Þ5, where Rþ

0 denotes the set of nonnegative reals and n
is the number of spatial dimensions. More intuitively, Rðt; x; c1;
c88; c

1
8;ℓ1;ℓ8Þ can be roughly thought of as the number of cells at

location x and time t which have c1 CG-1A molecules bound to
shared counterreceptors on their membranes, c88 CG-8 molecules
bound to CG-8 counterreceptor, c18 CG-8 molecules bound to
shared counterreceptor, ℓ1 molecules of CG-1's counterreceptors,
and ℓ8 molecules of CG-8 counterreceptor.2 For instance the cell
density at a point x at time t is given by the integral over the
various concentrations:

Cell density at location x

¼
Z 1

0

Z 1

0

Z 1

0

Z 1

0

Z 1

0
Rðt; x; c1; c88; c18; ℓ1;ℓ8Þ dc1 dc88 dc18 dℓ1 dℓ8

To write expressions as above in a more compact form, we
introduce the following notation: we denote the integral over

the various concentration asZ
⋯dP ¼

Z 1

0

Z 1

0

Z 1

0

Z 1

0

Z 1

0
…dc1 dc

8
8 dc

1
8 dℓ1 dℓ8 ð2:1Þ

The total concentration of CG-1A at time t and location x (bound to
its counterreceptor or freely diffusible) is thus

cu1ðt; xÞþ
Z

c1 � Rðt; x; c1; c88; c18;ℓ1;ℓ8Þ dP:

The morphogenetic density Rðt; x; c1; c88; c18;ℓ1;ℓ8Þ represents the
confluence of biologically significant variables (the cell density and
various counterreceptor concentrations, galectins) at any given
point in space, and their time dependence. Alternatively, we could
have introduced separate variables for the cell density and the
various other components, but with that approach, the fact that
counterreceptors are attached to the cells' plasma membranes
would not be as straightforward to model. Additionally, our
approach makes it possible to obtain detailed information about
the distribution of counterreceptors, for instance the dynamics of the
Gaussian distributions of the mutually shared counterreceptors on
cell membranes. In Fig. 5 we demonstrate that in our model, the
effect of higher condensation wavenumbers for increased initial CG-
1A concentrations is due to an increase in the average concentration
of shared counterreceptors (see also Fig. 6).

This approach has formal similarities to the equations for
structured populations from the field of mathematical population
biology (Thieme, 2003; Diekmann, 1999), where population den-
sities depend on one or more structural parameters such as age, in
addition to possibly a spatial dependence.

We note that in Section 4.3.1, we also obtain a “reduced model”
under the assumption of fast counterreceptor dynamics. This is a
system of reaction–diffusion equation involving a cell density as one
of the variables. The reduced model displays many of the properties
of the “full,” more complicated model; certain features of the full
model are not reproduced by the reduced model, however.

2.4. The model

In the following, we write down the equations for the mor-
phogenetic density R, and the equations for the freely diffusible
(unbound) galectins cu1 and cu8.

2.4.1. Equation for the morphogenetic density R
The equation for the morphogenetic density R takes into

account the Brownian motion, cell–cell adhesion, binding and
unbinding of galectins to counterreceptors, and changes in the
counterreceptor concentrations on the cell membranes (through
expression of counterreceptors and detachment of galectins from

Table 1
List of variables used in the model.

t Time
x Location
cu1 ¼ cu1ðt; xÞ Concentration of freely diffusible CG-1A

(that is, CG-1A not bound to counterreceptors on
cell membranes)

cu8 ¼ cu8ðt; xÞ Concentration of freely diffusible CG-8
(that is, CG-8 not bound to counterreceptors on
cell membranes)

R¼ Rðt; x; c1 ; c88; c18;ℓ1 ;ℓ8Þ Morphogenetic density with respect to the following
variables:
Volume,
Concentr. c1 of CG-1A bound to shared

counterreceptors on cell membranes,
Concentr. c88 of CG-8 bound to CG-8's unique

counterreceptors on cell membranes,
Concentr. c18 of CG-8 bound to shared

counterreceptors on cell membranes,
Concentr. ℓ1 of shared counterreceptors (not bound

to galectins) on cell membranes, and
Concentr. ℓ8 of CG-8 counterreceptors (not bound to

galectins) on cell membranes

Table 2
Explanation of terms in the morphogenetic density equation (2.2). A term with a
bar over it (for example α1) denotes a constant.

DR ¼ const Cell diffusion coefficient
α¼ α1cu1ℓ1�α2c1 Change in CG-1A bound to the shared counterreceptor:

uptake at rate prop. to cu1ℓ1; random detachment

β8 ¼ β8;1cu8ℓ8�β8;2c88 Change in CG-8 bound to its own counterreceptor

β1 ¼ β1;1cu8ℓ1�β1;2c18 Change in CG-8 bound to the shared counterreceptor

γ ¼ γ1
c1

c1 þc1
�γ2ℓ1 Change in the shared counterreceptor:

(Expression depends on CG-1A concentration;
degradation)

δ¼ δ1�δ2ℓ8 changes in CG-8 counterreceptor:
(Expression is constant (independent of CG-8
concentration))

1 Strictly speaking, the elevated galectin concentrations are associated with
“protocondensations,” subtle changes in cell-cell association that precede overt
morphological condensations (Bhat et al., 2011). Since protocondensations provide
the templates for the condensations themselves, for simplicity, the latter term will
be used throughout this paper for the galectin-determined cell associations.

2 Note on the mathematical notation: Here and elsewhere, the letter ℓ is used
to denote various counterreceptor concentrations. The use of this letter refers to the
fact that these counterreceptors have also been referred to as “ligands”.
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counterreceptors). The equation is as follows:

∂R
∂t

¼ DR∇2R|fflfflffl{zfflfflffl}
cell diffusion

� ∇ � ðRKðRÞÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
cell–cell adhesion

� ∂
∂c1

ðαRÞ� ∂
∂c88

ðβ8RÞ�
∂
∂c18

ðβ1RÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
binding=unbinding of galectins to counterreceptors

� ∂
∂ℓ1

½ðγ�α�β1ÞR��
∂

∂ℓ8
ðδ�β8ÞR
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
change in counterreceptors

ð2:2Þ

In the above equation, the terms in the formulas are summarized in
Table 2. (A termwith a bar over it (for example α1) denotes a constant.)

For example, the term γ�α�β1 models the rate at which the
membrane-bound concentration of the shared counterreceptors
which are not bound to either galectin changes: the change is due
to the expression of new counterreceptors by the cells and
degradation (leading to the effective rate γ), the binding and
unbinding of the counterreceptor to CG-1A (the rate α) and
the binding and unbinding of the counterreceptor to CG-8 (the
rate β1). We assume simple mass action-type dependencies of the
rates on the various concentrations. Note two crucial assumptions
that are directly motivated by experimental results: the rate of
expression of CG-1A counterreceptor depends on the concentra-
tion c1 of bound CG-1A (see the formula for γ above); this
dependence is modeled with a Michaelis–Menten term. In con-
trast, the expression of CG-8 counterreceptor is constant, and thus
independent of the concentration of bound CG-8.

Finally, the cell–cell adhesion term is formulated based on the
approach of Armstrong et al. (2006). Namely, we have

KðRðt; x; c1; c88; c18;ℓ1;ℓ8ÞÞ
¼ αKc1

ZZ
Dρ0

Z
~c1sðRðt; xþr; ~c1; ~c

8
8; ~c

1
8; ~ℓ1; ~ℓ8ÞÞ d ~P

r
j rj dnr ð2:3Þ

Here αK is a constant which represents the strength of the adhesion.
The effective adhesion force on a cell at location x depends on the
product of the concentration of bound CG-1A on the cell and the
concentration of bound CG-1A at locations xþr, where the distance
vector r varies over the n-dimensional ball Dρ0 ðxÞ centered at x,
where we can consider from one to three spatial dimensions
(n¼ 1;2;3). The radius ρ0 is the “sensing” radius, which is a measure
of the characteristic distance for adhesion; cells at distance greater
than ρ do not contribute to the adhesion forces.

There are many possible choices for the function sðRÞ, which
describes the dependence of the adhesion forces on the cell
density. The simplest choice is a proportionality assumption:

sðRÞ ¼ R ð2:4Þ
In this case, the contribution to the adhesion force from location
xþr is simply proportional to the concentration of bound CG-1A at
that location. In this model, the cell density can in principle get
arbitrarily large. To avoid this, one can take into account that
above a certain density, the effective attractive forces due to cell–
cell adhesion are balanced effectively by repulsive forces due to
volume exclusion; that is, cells cannot be packed into arbitrarily
small domains. This is implemented by a logistic form for the
function s, more precisely (Armstrong et al., 2006):

sðRÞ ¼ Rm

Rm�R
R max 1� 1

Rm

Z
R dP;0

� �
: ð2:5Þ

Recall that
R
R dP is the total cell density, and so the above

expression involves a volume constraint term. Here Rm is a
constant that specifies the maximum cell density for adhesion
and RoRm is a characteristic cell density. The proportionality
factor above is chosen such that the logistic term (2.5) has the
same value as the linear term (2.4) if Rðt; x; c1; c88; c18;ℓ1;ℓ8Þ is

constant in time and spatially homogeneous, or more specifically
if it has the form Rðt; x; c1; c88; c18;ℓ1;ℓ8Þ ¼ R � ϕðc1; c88; c18;ℓ1;ℓ8Þ,
where ϕ is some function.

Of course, many other functional forms for the expression sðRÞ
are possible. We tested both the linear form (2.4) and the logistic
form (2.5) in numerical simulations (see Section 4.2 and in
particular, Section 4.2.5). We found that they both resulted in
qualitatively very similar patterns, with the only difference being
that for the logistic form, the density peaks were less high and the
regions of low cell density between the peaks were less low. We
generally used the linear term (2.4) in simulations, mostly because
this avoids introducing another parameter, but see Section 4.2.5
for a more in-depth treatment.

A straightforwardly analogous expression of the flux density
(2.3) is valid for one or three spatial dimensions.

Eq. (2.2) was considered in a spatial domain Ω (one-, two- or
three-dimensional) with normal field nðxÞ, xA∂Ω. It has the
following initial and boundary conditions:

Initial condition : Rð0; x; c1; c88; c18;ℓ1;ℓ8Þ ¼ R0ðx; c1; c88; c18;ℓ1;ℓ8Þ
ð2:6Þ

Boundary conditions :
∂R
∂n x ¼ 0j

for xA∂Ω; Rj c1 ¼ 0 ¼ Rj c88 ¼ 0 ¼ Rj c18 ¼ 0 ¼ Rj ℓ1 ¼ 0 ¼ Rj ℓ8 ¼ 0 ¼ 0:

ð2:7Þ
This means that there are no (diffusive) flux conditions on the
boundary of the spatial domain. (Alternatively, we also used
periodic boundary conditions for the spatial domain in simulations,
see Section 4.2.) We assume that the decay of Rðt; x; c1; c88; c18;ℓ1;ℓ8Þ
in the non-temporal and non-spatial variables is fast enough so
that the integrals

R
RdP;

R
c1RdP, etc, are all finite. The inflow

boundary condition that R is zero when one of the concentrations
of the various proteins is zero ensures that no new cells are
created; indeed, only newly created cells can have zero protein
concentrations on their membranes. Mathematically, the corre-
sponding fact that the total cell mass is conserved is evident when
Eq. (2.2) is integrated with respect to dnx and dP. The boundary
conditions then guarantee that the right-hand side is zero.

2.4.2. Equations for the free galectin concentrations
The equations for the free galectin concentrations cu1 and cu8

take into account the diffusion, degradation, binding to and
detaching from counterreceptors, and secretion by cells. The
equations are as follows:

∂cu1
∂t

¼D1∇2cu1|fflfflfflffl{zfflfflfflffl}
diffusion

þν

Z
c88R dP|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

pos: feedback of CG�8
on prod: of CG�1A

�
Z

αR dP|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
binding of CG�1A

to its counterreceptor

�π1cu1|fflfflffl{zfflfflffl}
degradation

ð2:8Þ

∂cu8
∂t

¼D8∇2cu8|fflfflfflffl{zfflfflfflffl}
diffusion

þμ

Z
c1R dP|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

pos: feedback of CG�1A
on prod: of CG�8

�
Z

β1R dP�
Z

β8R dP|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
binding of CG�8
to counterreceptors

�π8cu8|fflfflffl{zfflfflffl}
degradation

ð2:9Þ

All terms in the above equations not defined in previous sections
are constants.

Again, we have boundary and initial conditions for these
equations, which here are

Initial condition : cu1ð0; xÞ ¼ cu1;0ðxÞ; cu8ð0; xÞ ¼ cu8;0ðxÞ ð2:10Þ

Boundary conditions :
∂cu1
∂n

9x ¼
∂cu8
∂n

9x ¼ 0 for xA∂Ω ð2:11Þ

Again, in simulations we also use periodic boundary conditions
instead of the no-flux Neumann conditions (see Section 4.2).
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3. Analysis and model simplifications

We now describe some analysis and simplification of the
system of Eqs. (2.2), (2.8) and (2.9). Mathematically, one source
of difficulties is the nonlocal term KðRÞ given in (2.3). From a
modeling point of view, it has to be noted that the parameter
space is quite large with 16 parameters. As is typical for models in
developmental biology, few of the parameters can be determined
with any accuracy. In several cases, such as expression rates, little
is known about even the order of magnitude.

We first derive a simpler set of equations based on the
assumption of fast counterreceptor binding and unbinding. Speci-
fically, we assume that these processes happen on a faster time
scale than the secretion of proteins and changes in the cell density
due to cell motion This assumption is well supported by data.
We then non-dimensionalize these equations to arrive at the “full”
model equations. We list the resulting parameters, their meanings
and some approximate values in Table 4.

3.1. Fast counterreceptor binding and unbinding

Note that the morphogenetic density R¼ Rðt; x; c1; c88; c18;ℓ1;ℓ8Þ
depends on five different concentrations, and so together with one
to three spatial dimensions, this makes the problem relatively high
dimensional. This poses, in particular, problems for the numerical
solution of the system described by the Eqs. (2.2), (2.8) and (2.9).

In order to reduce the dimensionality, we can separate “fast”
and “slow” variables. Namely, we make the assumption that
binding of galectins to counterreceptors happens on a faster time
scale than significant redistributions in protein abundance. This is
a common assumption in mathematical models of complex multi-
component systems. It may or may not be true, but at least it is an
explicit feature of the model that can be tested. We define the total
concentration of CG-1As counterreceptors (whether unbound or
bound to CG-1A or CG-8) to be
T1 ¼ c1þc18þℓ1: ð3:1Þ
Similarly, the total concentration of CG-8 counterreceptor is
T8 ¼ c88þℓ8: ð3:2Þ
Now, the binding and unbinding of galectins to counterreceptors
happen on a faster time scale than changes in the patterns of protein
concentrations and the cell density. This means that the variables
c1; c18;ℓ1; c88 and ℓ8 are “fast” variables, whereas T1 and T8, which
only depend on the production rates of the counterreceptors and not
of the binding and unbinding, are “slow” variables. So the rates γ and
δ are in some sense “small” compared to the rates α, β1 and β8.

We will use these observations to simplify the model equations
without giving a mathematically strictly rigorous derivation. First
we introduce the transformation in the concentration space:

ðc01; c108 ; c808 ; T1; T8Þ ¼ ðc1; c18; c88; c1þc18þℓ1; c88þℓ8Þ
It is straightforward to verify that this transformation satisfies

dc01 dc
10
8 dc808 dT1 dT8 ¼ dc1 dc

1
8 dc

8
8 dℓ1 dℓ8:

The system (2.2), (2.8) and (2.9) now appears with these new
variables, dropping the primes for better readability:

∂R
∂t

¼DR∇2R�∇ � ðRKðRÞÞ� ∂
∂c1

ðαRÞ� ∂
∂c88

ðβ8RÞ

� ∂
∂c18

ðβ1RÞ�
∂

∂T1
ðγRÞ� ∂

∂T8
ðδRÞ

∂cu1
∂t

¼D1∇2cu1þν

Z
c88R dP�

Z
αR dP�π1cu1

∂cu8
∂t

¼D8∇2cu8þμ

Z
c1R dP�

Z
β1R dP�

Z
β8R dP�π8cu8:

Here we have used the notation dP ¼ dc1 dc
1
8 dc

8
8 dT1 dT8.

The fact that the variables c1; c18 and c88 are “fast” means that we
can effectively consider solutions of the form:

Rðt; x; c1; c88; c18; T1; T8Þ ¼ Rðt; x; T1; T8Þδð~c1�c1Þδð~c88�c88Þδð~c81�c81Þ;
where δ denotes the Dirac delta function, and ~c1 ¼ ~c1ðt;x; T1; T8Þ,
~c88 ¼ ~c88ðt; x; T1; T8Þ and ~c18 ¼ ~c18ðt; x; T1; T8Þ are certain equilibrium
concentrations. Thus the above equation essentially is a quasi-steady
state approximation. (In Appendix A, we provide an argument for the
plausibility of this form by proving for a simplified version of (2.2) that
solutions converge to a point measure (Dirac measure) in the sense of
weak convergence of measures as t-1. This is not a mathematically
rigorous result for (2.2), which would be outside the scope of this
paper, but we plan to address this in a future publication.) These
equilibiria can be determined through the relations:

α¼ 0; β8 ¼ 0; β1 ¼ 0;

along with (3.1) and (3.2). Dropping the tildes, this yields

c1 ¼
α1

α2
cu1ℓ1; c18 ¼

β1;1

β1;2
cu8ℓ1; c88 ¼

β8;1

β8;2
cu8ℓ8; ð3:3Þ

with

ℓ1 ¼
T1

1þα1cu1=α2þβ1;1cu8=β1;2
; ℓ8 ¼

T8

1þβ8;1cu8=β8;2
: ð3:4Þ

Thus the system (2.2), (2.8) and (2.9) can be simplified to the
following system for Rðt; x; T1; T8Þ, cu1ðt; xÞ and cu8ðt; xÞ:
∂R
∂t

¼DR∇2R�∇ � ðRKðRÞÞ� ∂
∂T1

ðγRÞ� ∂
∂T8

ðδRÞ ð3:5Þ

∂cu1
∂t

¼D1∇2cu1þν

Z 1

0

Z 1

0
c88ðT8ÞR dT1 dT8�π1cu1 ð3:6Þ

∂cu8
∂t

¼D8∇2cu8þμ

Z 1

0

Z 1

0
c1ðT1ÞR dT1 dT8�π8cu8: ð3:7Þ

with

KðRðt; x; T1; T8ÞÞ

¼ αK c1ðT1Þ
ZZ

Dρ0

Z 1

0

Z 1

0
c1ð ~T 1ÞsðRðt; xþr; ~T 1; ~T 8ÞÞd ~T 1 d ~T 8

r
j rj dnr:

ð3:8Þ
Here sðRÞ has either the linear form (2.4) or the logistic form (2.5).
In all these equations, we have used the relations (3.3) and (3.4).
To better stress these dependencies we wrote c1ðT1Þ and c88ðT8Þ.
(These variables also depend on cu1ðt; xÞ and cu8ðt; xÞ, but these
dependencies are not explicitly indicated.)

3.2. Non-dimensionalization

We now non-dimensionalize Eqs. (3.5)–(3.7). To this end, we
define the non-dimensional time, space, and various concentra-
tions via

tn ¼ t=t̂ ; xn ¼ x=x̂; Tn

1 ¼ T1=T̂ 1;

Tn

8 ¼ T8=T̂ 8; ðcu1Þn ¼ cu1=ĉ
u
1; ðcu8Þn ¼ cu8=ĉ

u
8; Rn ¼ R=R̂:

Here the constant t̂ is a time scale, x̂ is a spatial scale, and T̂ 1, T̂ 8,
ĉu1 and ĉu8 are typically concentrations. Our choices are summarized
in Table 3.

The scale of the morphogenetic density is given by

R̂ ¼ 1

T̂ 1 T̂ 8x̂

Z Z 1

0

Z 1

0
R dT1 dT8 d

nx

Note that the integral on the right is time-independent, as can be
seen by integrating (3.5) with respect to dnx dT1 dT8 and using
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integration by parts and the boundary conditions. The above
definition scales the total cell mass to 1.

We also assume in the following that the diffusion coefficients
for the two galectins are the same; that is D1 ¼D8.

After non-dimensionalization, we obtain the following
non-dimensional equations, where we dropped the stars on
non-dimensional variables:

∂R
∂t

¼ dR∇2R�∇ � ðRKðRÞÞ

� ∂
∂T1

ð~γ ðcu1; cu8; T1ÞRÞ�
∂

∂T8
ð~δðcu8; T8ÞRÞ ð3:9Þ

∂cu1
∂t

¼∇2cu1þ ~ν

Z 1

0

Z 1

0
c88 R dT1 dT8�cu1 ð3:10Þ

∂cu8
∂t

¼∇2cu8þ ~μ

Z 1

0

Z 1

0
c1 R dT1 dT8� ~π8 cu8: ð3:11Þ

with

c88 ¼ c88ðt; x; T8Þ ¼
cu8T8

1þcu8
ð3:12Þ

c1 ¼ c1ðt; x; T1Þ ¼
cu1T1

1þ fcu8þcu1
ð3:13Þ

~γ ðcu1; cu8; T1Þ ¼
2cu1

cu1T1

cu1þ fcu8þ1
þ ~c 1

� ~γ2

0
BBB@

1
CCCA T1

cu1þ fcu8þ1
ð3:14Þ

~δðcu8; T8Þ ¼ 1� ~δ2
T8

1þcu8
ð3:15Þ

KðRðt; x; T1; T8ÞÞ ¼ ~αK c1ðt; x; T1ÞZ 1

0

Z 1

0

Z
Dr0 ðxÞ

c1ðt; s; ~T 1Þ ~sðRðt; s; ~T 1; ~T 8ÞÞ
s
j sj ds d ~T 1 d ~T 8 ð3:16Þ

Here we can either use a linear or logistic form for ~s in the
expression for the adhesion flux, as indicated in (2.4) and (2.5),
respectively, that is

~sðRÞ ¼ R or ð3:17Þ

~sðRÞ ¼
~Rm

~Rm� ~R
R max 1� 1

~Rm

Z 1

0

Z 1

0
R dT1 dT8;0

� �

with ~Rm ¼ Rm

R̂
; ~R ¼ R

R̂
: ð3:18Þ

We will mostly use the linear form for ~s in the simulations below,
but see Section 4.2.5 for more details. In (3.16), Dr0 denotes a disk of
radius r0 centered at 0 (in two spatial dimensions), or, analogously, an
interval in one dimension, or a ball in three dimensions.

The parameters appearing in the model are summarized in
Table 4. A determination of the (formal) steady state of the system
of Eqs. (3.9)–(3.11) is presented in Appendix B.

4. Results

Our results are divided into four subsections. In the first, we
present experimental results that validate two biological assump-
tions of the mathematical model presented here that were not
part of the study of Bhat et al. (2011), which provides the main
empirical basis of the model. In the second subsection, we
describe the initial simulation results of the model. These concur
with our experimental conclusions concerning the mechanistic
role of CG-1A and CG-8 in digit morphogenesis and patterning:
CG-1A induces condensation formation and CG-8 acts as a mainly
inhibitory regulator of condensation number and spacing. In the
third subsection, we analyze the robustness of the model's account
of the culture phenotypes. In the fourth subsection we demon-
strate mathematically the morphodynamic (Salazar-Ciudad et al.,
2003, sensu) nature of the two-galectin multiscale network. That
is, cell–cell signaling and cell movement are involved simulta-
neously and inextricably in the described network motif, making it
a unusual “dynamical patterning module” (Newman and Bhat,
2008).

Table 3
Scales for the non-dimensionalization.

Dimensionless
parameter

Value Explanation

t̂ ¼ 1
π1

Order of
days

Time scale given by degradation
of CG-1A

x̂ ¼
ffiffiffiffiffiffiffiffi
D1 t̂

p
Order of
0.1–1 mm

Spatial scale given by diffusion
of CG-1Aa

T̂ 1 ¼ γ 1 t̂=2 Unknown Scale for CG-1A counterreceptor
concentrations

T̂ 8 ¼ δ1 t̂ Unknown Scale for CG-8 counterreceptor
concentrations

ĉu1 ¼
α2

α1

Unknown Scale for CG-1A concentrations

ĉu8 ¼
β8;2

β8;1

Unknown Scale for CG-1A concentrations

a See Section 4.3 for evidence that the pattern-forming capability of the model
is robust across a wide range of diffusion coefficient values.

Table 4
Table of parameters in the system of Eqs. (3.9)–(3.11).

Scale Value Explanation

~αK ¼ t̂ ðT̂ 1Þ3 T̂ 8R̂αK Unknown Related to cell–cell adhesion strength

r0 ¼
ρ0
x̂

Order of 10�2 Interaction radius for cell–cell adhesion

~δ2 ¼ δ2 t̂ Unknown Related to degradation of CG-8 counterreceptor

~γ 2 ¼ γ2 t̂ Unknown Ratio of degradation/production rate of CG-1A counterreceptor

~c 1 ¼
c1
T̂ 1

Unknown Parameter in Michaelis–Menten term describing expression of CG-1A counterreceptor

f ¼ β1;1

β1;2

β8;2

β8;1

o1, order unknown Related to the relative rates at which CG-8 binds to its own and to CG-1A counterreceptor

dR ¼
DR

D1

{1 Cell diffusion coefficient

~π8 ¼
π8

π1

E1 Ratio of degradation rates of CG-1A and CG-8

~ν ¼ ν t̂ R̂ðT̂ 8Þ2 T̂ 1 x̂ Unknown Related to secretion rate of CG-1A

~μ ¼ μ t̂ R̂ T̂ 8ðT̂ 1Þ2 x̂ Unknown Related to secretion rate of CG-8
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4.1. Experimental basis of additional assumptions of the model

As indicated above, the bulk of the empirical basis for the
mathematical model is presented in the study of Bhat et al. (2011).
In this section, we present data supporting two additional
assumptions for our mathematical model which were not part of
that study, namely that (a) the counterreceptors to which CG-1A
and CG-8 bind on the limb precartilage mesenchymal cells are
located on the cells' plasma membranes, and (b) that the produc-
tion of the shared counterreceptor for CG-1A and CG-8 is under
the positive control of CG-1A, whereas, in contrast, the production
of CG-8's specific counterreceptor is not under the control of CG-8.

4.1.1. Cellular localization of CG-1A and CG-8
In order to observe localization of galectins within limb

mesenchyme undergoing pattern formation, leg bud micromass
cultures were fixed after 3 days. Separate sets of cultures were
stained with antibodies against CG-1A and CG-8. To visualize
membranes, the cultures were co-stained with the plasma
membrane-specific dye Cell Mask (Invitrogen). Both CG-1A and
CG-8 proteins were found to be predominantly localized to the cell
surface of the mesenchymal cells (Fig. 3). Strong localization of CG-
1A was also observed in the mesh-like ECM that the cells secrete
while organizing themselves into condensations.

4.1.2. Effect of CG-8 on its counterreceptor
Limb bud micromasses were cultured in serum-free defined

medium with and without addition of exogenous CG-8 for 2 days.
After fixation, the cultures were treated with biotinylated CG-8, which
has affinity for the counterreceptors of CG-8 (Bhat et al., 2011). While
micromass cultures pretreated with CG-1A show higher localization of
CG-1A counterreceptors than controls (Bhat et al., 2011), pretreating
cultures with CG-8 had no effect on the localization of CG-8 counter-
receptors (see Fig. S4 in the Supplementary Material).

4.2. Analysis and simulation results

We now discuss the behavior of the system (3.9)–(3.11) by
means of a numerical exploration. The parameters are summar-
ized in Table 4. Unfortunately, many values of the parameters are
unknown, even their orders of magnitude. We thus concentrated
on qualitative questions for this study rather than trying to match
results quantitatively.

As indicated before, the goal of our study is to define the role of
galectins in the core mechanism of pattern formation in the
micromass experiments of Bhat et al. (2011). In particular, this
includes a possible explanation of the apparent paradox that while
CG-1A and CG-8 form a positive feedback loop, they have opposite
effects on cell condensation if added to the micromass experi-
ments (or injected into limb buds): while CG-1A enhances con-
densations, CG-8 is an inhibitor of condensations.

Our approach is two-fold: we first address the question of
whether the model can display some of the key experimental
results, listed below. As a proof of principle, this would be evidence
that the key assumptions concerning the regulatory galectin net-
work which form the basis of the model, as described in Section
2.1, are sufficient to explain essential experimental findings. This
proof of principle is the content of this subsection. The second step
is then to use the model to make predictions which can in principal
be tested experimentally, and also to conceptually specify the
pattern forming mechanism in the model; that is to “back trans-
late” the modeling results from a mathematical description to a
verbal one. This last step is done in Section 4.3.

For the first step, the proof of principle that the model can indeed
explain key findings, we focused on the following three questions:

1. In the control case, can the system produce patterns in the cell
density as observed in experiments?

2. When CG-1A is added, does the number of condensations
increase, and under what conditions is this the case?

Fig. 3. CG-1A and CG-8 are predominantly localized on the surface of precartilage limb mesenchymal cells. Microscopic field in a 2-day high-density micromass culture
showing indirect immunolocalization for CG-1A in precartilage limb mesenchymal cells (a) and staining of membrane-specific fluorescent dye Cell Mask (b). Microscopic
field in a 2-day high density micromass culture showing indirect immunolocalization for CG-8 in precartilage limb mesenchymal cells (c) and the staining of membrane-
specific fluorescent dye Cell Mask (d). Both CG-1A and CG-8 colocalize with Cell Mask suggesting a membrane-specific cellular distribution of the two chicken galectins.
Images (a–d) are at same magnification and were photographed with a 63� oil objective.
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3. When CG-8 is added, does the number of condensations
decrease, and under what conditions is this the case?

We demonstrate the capabilities of the model to reproduce the
effects (1)–(3) above, but only conducted a somewhat limited
search of parameter space owing to the large number of para-
meters. After illustrating that the system can reproduce these
experimental results, we use a combination of analysis and further
numerical simulation to investigate the basic mechanisms of this
pattern formation.

4.2.1. Approach
To investigate the questions listed above, we numerically

computed the solutions to (3.9)–(3.11) for different values of the
parameters listed in Table 4. We used the one-dimensional interval
ð0;1Þ as the spatial domain with periodic boundary conditions for
the morphogenetic density R and the galectin concentrations cu1
and c78. A Lax–Friedrich scheme was used to solve the equations
numerically. As initial conditions for the control case, we chose the
spatially homogeneous steady state concentrations cu1 and cu8 for
cu1ðt; xÞ and cu8ðt; xÞ as given in Appendices B.1 and B.2, respectively.
For the morphogenetic density Rðt; x; T1; T8Þ, we chose the (multi-
variate normal) distribution:

Rðt; x; T1; T8Þ ¼ C expð�ðT1�T 1Þ2=s1Þexpð�ðT8�T 8Þ2=s8Þ with

C ¼
Z 1

0

Z 1

0
expð�ðT 0

1�T 1Þ2=s1Þexpð�ðT 0
8�T 8Þ2=s8Þ dT 0

1 dT
0
8

� ��1

;

ð4:1Þ

with the steady state values for the counterreceptors of CG-1A and
CG-8, T 1 and T 8, given by Eqs. B.4 and B.3, respectively. (The
Gaussian distributions in T1 and T8 with variances s1=2;s8=2 can
be considered as perturbations around the steady state
Rðt; x; T1; T8Þ ¼ δðT1�T 1ÞδðT8�T 8Þ, where δ denotes the Dirac delta
function.) Additionally, we added random spatial noise to the
value of Rðt; x; T1; T8Þ. For the function ~s in the adhesion flux (3.16),
we used the linear form ~sðRÞ ¼ R unless noted otherwise; see
however Section 4.2.5.

To simulate the situations in questions (2) and (3) above, we
increase the initial concentrations for cu1 and cu8, respectively, while
keeping the other unchanged relative to the “control” case.

4.2.2. The system can produce spontaneously emerging spatial
patterns in the cell density

We first present evidence that the system (3.9)–(3.11) can
produce spatial patterns in the morphogenetic density Rðt; x;
T1; T8Þ for a wide range of parameters. While we will discuss the
mechanism for this in Section 4.3 in depth, we also demonstrate
that the cell-adhesion flux term �∇ � ðRKðRÞÞ in (3.9) plays a
crucial role here. This is similar to the formation of cell clusters
in models of populations of cells with uniform adhesive properties
(Armstrong et al., 2006). For this mechanism, it is important that
the adhesive flux term KðRÞ in (3.16) be large enough. To illustrate
this, consider Fig. 4, which shows the distribution of the cell
density

R1
0

R1
0 Rðt; x; T1; T8Þ dT1dT8 for four different values of the

cell–cell adhesion constant ~αK .

Fig. 4. Plots of the total spatial cell density ∬ Rðt; x; T1 ; T8Þ dT1 dT8 at times t¼0 and t¼1 for different values of the cell–cell adhesion constant ~αK . Other values are
r0 ¼ 0:04; ~δ2 ¼ 1; ~γ2 ¼ 1; ~c 1 ¼ 1; f ¼ 0:8;dR ¼ 0:04; ~π8 ¼ 1; ~ν ¼ 0:8; ~μ ¼ 2. Initial distributions are dashed, distributions at t¼1 are solid. The initial cell distributions have small
amplitude random noise added, which is not visible due to the scale of the vertical axis. For sufficiently small ~αK , no spatial patterns are produced (plot ~αK ¼ 200). As ~αK is
increased, periodic patterns appear. The number of condensations (peaks) increases with ~αK as illustrated. (Note that periodic boundary conditions are used, so that the
positions x¼0 and x¼1 denote the same physical point.)
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This cell–cell adhesion constant ~αK represents a measure of the
strength of adhesion mediated by CG-1A. Below a certain thresh-
old for ~αK , no pattern appears. As ~αK is increased, a characteristic
pattern of peaks representing condensations appears. The number
of such condensations increases with ~αK .

For a further investigation of the subset of parameters which
allows for pattern formation capabilities, see Section 4.3, where we
derive a simplified systemwe term the “reduced system”. This system
displays some of the key behaviors of the “full system” (3.9)–(3.11),
but has the advantage that some analytic methods such as a linear
stability analysis are possible. See in particular Fig. 12 which shows
the region in ~c 1 ~αK parameter space where the reduced system can
produce patterns. More specifically, the gray region corresponds to
points in parameter space where there is a wavenumber k with a
corresponding positive temporal growth rate. As can be seen if we fix
~c 1, then for large enough αK , the system can produce patterns.

4.2.3. Effect of increased values for the initial CG-1A concentrations
We next investigate what happens if the initial concentration of

freely diffusible CG-1A, cu1ðt; xÞ, is taken to be larger than the
equilibrium concentration cu1.

By inspection of Eqs. (3.9)–(3.11), this leads to kinetics terms in
∂cu8=∂t being positive, and so the diffusible CG-8 concentration
cu8ðt; xÞ increases, whereas correspondingly the diffusible CG-1A
concentration cu1ðt; xÞ decreases, at least for some time. Most
important though is the effect on the cell adhesion flux RKðRÞ as
given in (3.16). Note that the increase in the diffusible CG-1A
concentration cu1ðt; xÞ leads to an increase in the number of CG-1A
counterreceptors bound to CG-1A, c1ðT1Þ, and thus an increase in the

adhesion flux RKðRÞ compared to the “control” case. Very roughly
speaking, this increase is equivalent to an increase in the cell–cell
adhesion coefficient ~αK . One thus expects an increase in the number
of condensations, similar to the effect of increasing ~αK as illustrated
in Fig. 4. (One should note that cu1ðt; xÞ is initially decreasing as
explained above, and so that RKðRÞ is decreasing in time, at least
initially; however this decrease is typically slow enough that the
spatial pattern in the cell density forms with significantly increased
adhesion flux compared to the “control” case.)

Fig. 5 shows a typical plot of the resulting cell distribution for
different levels of increased CG-1A. The calculated effect of
increased CG-1A on CG-1A counterreceptors is to cause the
average number of these counterreceptors per cell to increase
approximately linearly over time (Fig. 6). This is an experimentally
testable prediction of the model.

The above discussion can be summed up as follows: if levels of
CG-1A are increased, the net effect is that more CG-1A counter-
receptors are bound to CG-1A, leading to stronger cell–cell adhe-
sion, which again leads to more cell condensations.

4.2.4. Effect of increased values for the initial CG-8 concentration
We now investigatewhat happens if the initial concentration of CG-

8, cu8ðt; xÞ, is taken to be larger than the equilibrium concentration cu8.
Intuitively it is less clear what happens in this case. On the one

hand, this should lead to a decrease in the percentage of CG-1A
counterreceptors which are bound to CG-1A molecules, as CG-8
molecules will compete with CG-1A counterreceptors for the
shared counterreceptors. This effect alone would lead to a decrease
in cell–cell adhesion and fewer condensations. On the other hand,

Fig. 5. An illustration of the effect of an increased initial CG-1A concentration. Left column: plots of the cell density ∬ Rðt; x; T1; T8Þ dT1 dT8 at times t¼0 and t¼1 for different
initial values of the freely diffusible CG-1A concentration cu1ðt; xÞ. Right column: frequency distribution of the CG-1A counterreceptor molecules on cell membranes
corresponding to the cell density on the left. (For instance, in the “control” case, T1 distribution is approximately Gaussian with mean T1 ¼ T 1 � 1:5.) Initial distribution is
dashed, distribution at t¼1 is solid. Parameter values were as in Fig. 4 with ~αK ¼ 400. The figure illustrates that increasing the initial CG-1A concentration leads to a pattern
with larger wavenumber, i.e., a higher numbers of condensations. Note that the mean number of CG-1A counterreceptors T1 increases (left column).
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an increase in CG-8 also leads to increased production of CG-1A
and therefore potentially the latter's counterreceptors. Thus, while
the percentage of shared counterreceptors bound to CG-1A is
lowered, this effect may be mitigated and in fact canceled out by
an increase in the total number of the shared counterreceptors.

We conducted numerical experiments to investigate the problem.
Results are shown in Figs. 7 and 8. In the data set for Fig. 7, increasing
CG-8 has no effect on the number of condensations. However, in the
data set for Fig. 8, increasing CG-8 does decrease the number of
condensations. What is the difference? A crucial point appears to be
the percentage of CG-1A counterreceptors which are unbound.

In Fig. 7, the percentage of CG-1A counterreceptors which are
unbound is relatively high (roughly 40%). For increased CG-8
(second row), the percentage of CG-1A counterreceptors bound
to CG-1A is lower than the control case initially, but quickly
recovers. Additionally, the average number of CG-1A counterre-
ceptors increases slightly compared to the control case. Intuitively,
what appears to happen is that the additional CG-8 molecules
primarily attach to CG-1A counterreceptors which were unbound
before. Thus the number of CG-1A counterreceptors bound to CG-
1A, and thus the strength of cell–cell adhesion, remained relatively
constant, leading to little change compared to the control case.

In contrast, in Fig. 8, the percentage of CG-1A counterreceptors
which are unbound is relatively low (roughly 12%). For increased
initial CG-8, the percentage of CG-1A counterreceptors bound to
CG-1A is low at first and increases with time, but it remains lower
than the control case by about 2 percentage points even at the end
(time t¼1). There is little change in the average number of CG-1A
counterreceptors compared to the control case. Intuitively, this may
be explained by the additional CG-8 molecules attaching to shared
counterreceptors which were bound to CG-1A before. This affects
cell–cell adhesion, ultimately leading to fewer condensations.

We also investigated the importance of other features of
parameter space. One important parameter is the dimensionless
number f as given in Table 4 by

f ¼ β1;1

β1;2

β8;2

β8;1
:

Fig. 6. Temporal evolution of CG-1A counterreceptor concentration on cell surfaces
for an increased initial CG-1A concentration. The graph shows a contour plot of the
frequency distribution of CG-1A counterreceptors as a function of time. Note that
the Gaussian distribution gets slightly narrower as time progresses, and the mean
increases roughly linearly with time, illustrating in greater detail what can also be
seen also in the bottom right graph of Fig. 5. The parameters used were
r0 ¼ 0:04; ~δ2 ¼ 1; ~γ2 ¼ 1; ~c 1 ¼ 5; f ¼ 0:8;dR ¼ 0:04; ~π8 ¼ 1; ~ν ¼ 0:8; ~μ ¼ 2; ~αK ¼ 15, with
a logistic term (2.5) with Rm¼6 in the adhesion flux instead of a linear term, and
the initial value of cu1 was increased to 150% of its equilibrium value cu1.

Fig. 7. Illustration of the effect of postulating an increased initial CG-8 concentration, here for the case that the percentage of unbound CG-1A counterreceptors is “large”.
The first row shows plots for a simulation representing the “control” case; the second row represents the case where the initial CG-8 concentration was elevated. First
column: plots of the cell density ∬ Rðt; x; T1 ; T8Þ dT1dT8 at times t¼0 and t¼1 for different initial values of the freely diffusible CG-8 concentration cu8ðt; xÞ. In all graphs, initial
distributions (t¼0) are dashed, distributions at t¼1 are solid. (Top row: “control” case; bottom row: initial CG-8 is 50% higher than the equilibrium concentration.) Second
column: frequency distribution for T1, the CG-1A counterreceptor molecules on cell membranes, averaged over space. Third column: unbound CG-1A counterreceptors as a
percentage of all CG-1A counterreceptors, plotted against space. Fourth column: CG-1A counterreceptors bound to CG-1A as a percentage of all CG-1A counterreceptors.
Parameter values were as in Fig. 5. The figure illustrates that for this parameter set, increasing the initial CG-8 concentration does not change the wavenumber, i.e., the
number of condensations tends to be the same as the control case. Note that initially, the percentage of CG-1A counterreceptors bound to CG-1A molecules is below that of
the “control” case. However, at the end (t¼1), it is effectively back to the level of the control case. Also note that the average total number of CG-1A counterreceptors
increases slightly (second column).
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Here β1;1 is the rate at which CG-8 binds to CG-1A counterreceptor
and β1;2 is the rate at which CG-8 detaches from CG-1A counter-
receptor. Similarly, β8;1 is the rate at which CG-8 binds to its own
counterreceptor and β8;2 is the rate at which CG-8 detaches from
its own counterreceptor (see Table 2). So f essentially describes the
relative affinity of CG-8 binding to CG-1A counterreceptor versus
binding to its own counterreceptor. The value of f is not known,
but one expects f o1 since CG-8 should bind to its own counter-
receptor more readily than to the shared counterreceptor.

To investigate the role of f, we conducted tests with the same
data set as in Fig. 8 (where f¼0.8), but with different values of f. The
results are summarized in Table 5. The results suggest that increas-
ing the initial concentration of CG-8 results in a decrease of the
number of condensations compared to the control case only for the
values f¼0.8 and f¼0.6. For f¼0.4 and f¼0.2, the number of
condensations does not change significantly. These results strongly
suggest that a decrease in the number of condensations for
increased initial CG-8 concentrations only occurs if f is above a
certain threshold, which in this case lies somewhere between f¼0.4
and f¼0.6. (The percentage of unbound CG-1A counterreceptors
increases as f decreases, so the observed behavior is also consistent
with the previously observed importance of this percentage as
described above. However, the increase is relatively small.)

4.2.5. Logistic dependence on cell adhesion flux and galectin patterns
In the simulations of the previous sections, we used the linear

form (2.4) in the adhesion flux RKðRÞ given by (3.16). We now
briefly discuss the case of the logistic form as in (3.18):

~sðRÞ ¼
~Rm

~Rm� ~R
R max 1� 1

~Rm

Z 1

0

Z 1

0
R dT1 dT8;0

� �

Here we used R̂ ¼ 1. As discussed in the text after (2.5), this logistic
form takes into account that above a certain threshold cell density,

the attractive flux due to adhesion is effectively balanced by
a repellent flux due to volume exclusion effects (Armstrong
et al., 2006).

To see how this changes the simulation results, consider Fig. 9.
This uses the same parameters as Fig. 8, but with a logistic term
(2.5) with Rm¼12 in the adhesion flux instead of a linear term.

A comparison of Fig. 9 (central row) with Fig. 8 shows that the
logistic term leads to less dense peaks and denser valleys between
peaks, but otherwise there is little qualitative difference in the
profiles. See also the discussion by Armstrong et al. (2006).

These figures also illustrate that the model predicts a spatial
pattern in the distribution of bound galectins: within condensa-
tions, there are more bound galectins, even if the galectin
concentration is normalized by cell density3. This result agrees
with experimental findings of Bhat et al. (2011), where an
important result was that the higher concentrations of galectins
in chondrogenic condensations were not an artifact of the higher
cell density in condensations, but rather that both galectins were
preferentially elevated on a per cell basis at the sites of condensa-
tion. See also the discussion in the Introduction (Section 2.1) and
more analysis of this point in Section 4.3.

4.3. Exploration of the instability mechanism

In previous sections, we showed that the model can reproduce
some key experimental results, and that it can be used to make some
predictions for new experiments. We note that when building the
model, we did not explicitly implement a mechanism for pattern
formation, but we modeled what we considered to be key features of

Fig. 8. An illustration of the effect of postulating an increased initial CG-8 concentration, here for the case that the percentage of unbound CG-1A counterreceptors is “small”.
The graphical presentation is analogous to Fig. 7. First column: plots of the cell density ∬ Rðt; x; T1; T8Þ dT1 dT8 at times t¼0 and t¼1 for different initial values of the freely
diffusible CG-8 concentration cu8ðt; xÞ. (Top row: “control” case; bottom row: initial CG-8 is 50% higher than the equilibrium concentration.) Second column: frequency
distribution of the CG-1A counterreceptor molecules on cell membranes. Third column: unbound CG-1A counterreceptors as a percentage of all CG-1A counterreceptors,
plotted against space. Fourth column: CG-1A counterreceptors bound to CG-1A as a percentage of all CG-1A counterreceptors. Parameter values were as follows:
r0 ¼ 0:04; ~δ2 ¼ 1; ~γ2 ¼ 1; ~c 1 ¼ 5; f ¼ 0:8;dR ¼ 0:04; ~π8 ¼ 1; ~ν ¼ 0:8; ~μ ¼ 2; ~αK ¼ 15. The figure illustrates that for this parameter set, increasing the initial CG-8 concentration
decreases the wavenumber of the resulting cell distribution. Note that the percentage of CG-1A counterreceptors bound to CG-1A molecules remains below that in the
“control” case (see rightmost column). Also note that the average total number of CG-1A counterreceptors barely increases compared to the control case. In repeated
simulations, the mean number of peaks was 7.50 in the control case and 6.25 in the case of increased CG-8 (n¼4).

3 A logistic or other nonlinear flux term is required for this analysis. This is
because a linear term leads to very dense condensation peaks and regions with
very low density between peaks Fig. 5), which makes normalizing by the cell
density numerically problematic.
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the system. Thus while the simulations described in the previous
section gave some indications of the nature of the mechanism for
pattern formation, the focus was on verifying that the system has
pattern forming capabilities rather than investigating the mechanism.

In this section, we investigate the nature of the pattern
formation mechanism; that is, we address the problem how the
model can give rise to cellular patterns.

For this, an analytical investigation using the standard technique of
linearization would be useful. Unfortunately, the behavior equations
(3.9)–(3.11) are hard to investigate analytically at the formal steady
state (found in Appendix B) as the morphogenetic density is of the
form RðT1; T8Þ ¼ R0δðT1�T 1ÞδðT8�T 8Þ, where δðxÞ denotes the Dirac
distribution. Since this is not a strong solution, standard techniques
for investigating stability by linearization do not apply.

To address these problems, we consider what we call the
“reduced system”. This system is obtained by the additional
assumption of “fast counterreceptor expression” (see below for
more details). This assumption is a simplification, and indeed with
this model, certain experimentally observable effects cannot be
reproduced, such as the fact that with added CG-8, the number of
condensations is reduced. However, the behavior of this reduced
model in the control case is quite similar, and the reduced model
has the advantage that it is readily analyzable by means of a
standard linear stability method, which provides insight about the
nature of the pattern-forming instability.

We first derive this reduced model in the next section and then
investigate it analytically. The results of this analysis are then used
to elucidate the mechanism of pattern formation in the model,
which we address in the next subsection.

4.3.1. Reduced model
The system (3.9)–(3.11) can be greatly simplified under the assump-

tion that counterreceptor production is fast compared to production of
galectins. This assumption may be justified by the smaller number of
molecules required to populate the cell surface compared to that
necessary to produce a critical concentration of matricellular proteins
like CG-1A and CG-8. Nonetheless, there are no data that bear on this
supposition and we have not used it in the investigation of the “full
system” of Eqs. (3.9)–(3.11) in Section 4.2. However, the simplified
equations can provide some insights into the behavior of the full
system, and they are easier to analyze analytically and numerically. In
the “control” case, when initial conditions are chosen as the steady state
with a small random perturbation, the reduced system (4.2)–(4.4) gives
qualitatively similar results to the “full system” (3.9)–(3.11) (see Fig. 11).

The assumption of fast counterreceptor production yields an
equation for Rðt; x; T1; T8Þ of the form:
Rðt; x; T1; T8Þ ¼ Rðt; xÞδðT1�T 1ÞδðT8�T 8Þ with

T 1 ¼ T 1ðcu1; cu8Þ; T 8 ¼ T 8ðcu1; cu8Þ:
where T 1 and T 8 are the formal steady state total counterreceptor
concentrations. These values T 1 and T 8 can be found via the
equations:

~γ ðcu1; cu8; T1Þ ¼ 0; ~δðcu8; T8Þ ¼ 0;

with the functions given in (3.14) and (3.15), respectively. This
yields

T 1 ¼ ð1þcu1þ fcu8Þ
2cu1� ~γ2

~c1
~γ2cu1

; T 8 ¼
1þcu8
~δ2

We consider the case with a logistic term in the cell adhesion
flux as in (2.5). Using this in the system (3.9)–(3.11) gives the
following simplified system for Rðt; xÞ; cu1ðt; xÞ and cu8ðt; xÞ which we
refer to as the “reduced system”:

∂R
∂t

¼ dR∇2R�∇ � ðRKðRÞÞ ð4:2Þ

∂cu1
∂t

¼∇2cu1þ
~ν

δ2
Rcu8�cu1 ð4:3Þ

∂cu8
∂t

¼∇2cu8þ
~μ

~γ2
ð2cu1� ~γ2

~c 1ÞR� ~π8 cu8: ð4:4Þ

Here KðRÞ can be specified using (3.16). This gives (in one
spatial dimension)

KðRðt; xÞÞ ¼ ~αK
2cu1ðt; xÞ�γ2

~c 1

~γ2

Z r0

� r0

~sðRðt; xþsÞÞ2c
u
1ðt; xþsÞ�γ2

~c 1

~γ2

s
j sj ds;

where we now used a logistic dependence of the flux on the
morphogenetic density as in (3.18).

4.3.2. Linear stability analysis of the “reduced system”

The reduced system (4.2)–(4.4) has the steady state:

R ¼ 1; cu1 ¼
~μ ~ν ~c 1 ~γ2

2 ~μ ~ν� ~γ2 ~δ2 ~π8
; cu8 ¼

~δ2
~ν
cu1:

In a standard steady state linear stability analysis (in one spatial
dimension), consider first order solutions of the form:

Rðt; xÞ ¼ RþδReikxþ λt ; cu1ðt; xÞ ¼ cu1 þδcu1e
ikxþ λt ;

cu8ðt; xÞ ¼ cu8 þδcu8e
ikxþ λt :

This gives the dispersion relation for the wavenumber k and
growth rate λ as

AðkÞ
δR

δcu1
δcu8

0
B@

1
CA¼ λ

δR

δcu1
δcu8

0
B@

1
CA; ð4:5Þ

with the linearization matrix A(k) given by

AðkÞ ¼

a11ðkÞ a12ðkÞ 0

~ν
1
~δ2

cu8 �k2�1
~ν
~δ2

~μ 2
cu1
~γ2

�c1

� �
2
~μ

~γ2
�k2� ~π8

0
BBBBB@

1
CCCCCA

Here we used

a11ðkÞ ¼ �k2dR�2 ~αK
Rm�2
Rm�1

2cu1� ~γ2
~c 1

~γ2

 !2

ð cos ðr0kÞ�1Þ;

a12ðkÞ ¼ �4
~αK

~γ2
2cu1� ~γ2

~c 1

~γ2

 !
ð cos ðr0kÞ�1Þ:

4.3.3. Pattern-forming instability
A steady state pattern can form if for some wavenumber k, a

corresponding temporal eigenvalue λ as determined by the dis-
persion relation (4.5) is real and positive. As an example, we
consider the reduced system corresponding to the parameter set
used in Fig. 8. Fig. 10 (left panel) shows the corresponding plot of
the maximum temporal eigenvalue s versus the wavenumber k as
obtained from the dispersion relation (4.5). One sees that there is a

Table 5
Role of the parameter f. The data was the same as that used in Fig. 8, except that the
value of f was changed to the values shown below. The values below are averages of
several simulations.

f # Peaks (control:
cu8ð0; xÞ ¼ cu8)

# Peaks
(cu8ð0; xÞ ¼ 1:5 cu8)

% unbound CG-1A
counterreceptors

0.8 7:5 6:25 12.0
0.6 8:3 6:3 13.6
0.4 7:50 7:75 15.5
0.2 8:0 8:0 18.0
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positive eigenvalue for wavenumbers in the approximate interval
½0;18π�. This means that patterns with corresponding wavenum-
bers can form spontaneously from initial conditions close to the
equilibrium. The maximum of the function is between k¼ 12π and
k¼ 14π, and hence a pattern with six or seven peaks is the most

likely to appear, although five or eight peaks are also possible. This
is consistent with numerical simulations, see the left panel in
Fig. 11 for a typical outcome. (The same holds for simulations of
the “full model”; a spectral analysis of the spatial cellular pattern
of the “control” case in Fig. 9 (scaled galectin diffusion coefficient

Fig. 9. Comparison of several simulations with logistic term in the cell adhesion flux and different values of galectin diffusion coefficients. The same parameter set as in Fig. 8
was used, but with a logistic term (2.5) with Rm¼7 in the adhesion flux instead of a linear term. (The same parameter set was used for Fig. 6.) Left column: cell density as a
function of space. Right column: spatial distribution of CG-1A bound to its counterreceptor (solid line) and CG-8 bound to its counterreceptor (dashed line), both at time t¼1.
The scale is chosen so that the initial distribution corresponds to the value 1. Note the relatively low amplitude of the patterns. Top row: diffusible galectin concentrations are
kept constant (in time and space) at the equilibrium levels, corresponding to effectively infinite diffusion of unbound galectins. Note that the concentration of bound CG-8 is
spatially homogeneous, but there is still a pattern in the bound CG-1A concentration. Center row: “control” case: diffusion coefficient of the galectins at the same value d¼1
as in Fig. 8. Note that the amplitude of bound CG-1A is increased, and the spatial distribution of CG-8 now displays a spatial periodicity as well. Bottom row: Diffusion
coefficient of the galectins at the value d¼0.1. Note that the cell density distribution is qualitatively unchanged, but the amplitude of bound galectins is larger.
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d¼1; center left panel) reveals that indeed the mode correspond-
ing to wavenumber k¼ 12π has by far the largest amplitude in the
discrete Fourier transform, see right panel in Fig. 10.) Also note
that at k¼0, in the spatially homogeneous case, there is a small
positive temporal eigenvalue. This corresponds to the fact that the
galectin dynamics form a positive feedback loop.

The results of the linear stability analysis also allow for an
investigation of the region in parameter space where the system
can produce spatial patterns in the cell density. The gray region in
Fig. 12 shows those points in ~c 1 ~αK parameter space where there is a
wavenumber k with corresponding positive temporal growth rate.
For instance, this plot shows that for large enough values of the
adhesion strength coefficient αK , the system can produce patterns.

4.3.4. Instability mechanism
We now seek to explain how the system can produce patterns,

that is, we seek an intuitive understanding for its pattern forma-
tion capabilities.

As indicated above (see Section 4.2), cell–cell adhesion appears
to be a crucial aspect of this mechanism. This is substantiated by a
closer examination of the eigenvector at the most unstable
wavenumber k¼ 12π in Fig. 10 (i.e., the one with the largest
corresponding temporal growth rate), which reveals more about
the nature of the pattern forming instability. At k¼ 12π, the
corresponding maximum eigenvalue is þ16.1, and the eigenvector
is ðδR; δcu1; δcu8Þ ¼ ð1;0:003;0:003Þ: This means that the amplitude of
the corresponding pattern in the cell density will be much larger

than the amplitude in the diffusible galectins. In fact, one can
deduce that the pattern forming instability is primarily due to the
physical interaction of the cells; the spatial pattern in the diffusible
galectins seems to be of little significance in the pattern formation
process. More evidence for this is supplied in Fig. 9, which shows
the result of simulations of the “full” system with different values
for the diffusivity of the galectins. As can be seen, even if the
galectins diffuse effectively infinitely fast, spatial patterns in the
cell density can form (top row). Similarly, if galectin diffusion is
very low (1/10th of the original values, bottom row), patterns
form. Thus it appears that the way galectins diffuse is not an
important factor for pattern formation. In fact, in a similar vein, we
show in Section 4.4 that under the assumption of zero cell motility,
the system is incapable of forming spatial patterns in the con-
centrations of the galectins or their counterreceptors.

Thus the main driving mechanism behind cell condensation in
the model is cell–cell adhesion, which in turn is mediated by CG-
1A bound to its counterreceptor. Small differences in the initial cell
density lead to the effective movement of cells toward these areas
of higher concentration. Because of cell–cell adhesion, cells tend to
get trapped in these protocondensations.

As cells are recruited into condensations, the immediate
environments of these aggregates are depleted of cells and thereby
a zone of inhibition of aggregation is created around each
aggregate. The size of these depleted zones is determined by the
strength of cell–cell adhesion and the effective interaction dis-
tance for cell–cell adhesion, the sensing radius ρ0 as discussed
after Eq. (2.3).

Fig. 10. Left: Dispersion relation for the reduced system. The parameter values were as in Fig. 8, with Rm¼3. Plotted is the wavenumber k of the pattern versus the maximum
real part of the corresponding eigenvalues (corresponding to temporal growth rate). Note that there is a maximum between k¼ 12π and k¼ 14π, corresponding to patterns
between five and eight maxima as the ones with largest temporal growth rates, and thus most likely to appear. Also note that at k¼0, there is a positive eigenvalue, which
corresponds to the fact that the galectin dynamics alone form a positive feedback loop. Right: plot of the single-sided spectrum of the amplitude of the discrete Fourier
transform (DFT) of the cell density pattern shown in Fig. 9 for the “control” case (see center panel in the left column of Fig. 9; galectin diffusion coefficient d¼1). Note the
peak at n¼6, which corresponds to a sine wave with wavenumber k¼ 12π. Smaller peaks are at higher “harmonics” corresponding to wavenumbers k¼ 24π and k¼ 36π.

Fig. 11. Numerical simulations of the reduced system (4.2)–(4.4) for the same parameter values as in Fig. 10, with the exception of the parameters ~ν and ~μ , which describe the
rate of expression of CG-1A and CG-8, respectively (see (2.8) and (2.9) for the corresponding dimensional parameters ν and μ , respectively). The cell density as a function of
space is plotted for different times. Left: ”control” case: ~ν and ~μ are as in Fig. 10. Center: the production rate of CG-1A, ~ν is increased to ~ν ¼ 1:6 from the original 0.8.
As described in the text, this increase in the rate at which CG-1A is produced leads to faster pattern formation, more dense condensations and a larger number of
condensations. Also note that each peak is separated into fork-like smaller peaks. This is probably due to the fact that the concentration of CG-1A is increasing during
condensation, so that first large condensations form, and then within each condensation, two or more “sub-condensations” form. It is not clear whether this modeling effect
has any correspondence in experiments. Right: the production rate of CG-8, ~μ is increased to ~μ ¼ 4 from the original 2. The pattern forms faster and the resulting
condensations are denser. Note however that there is little effect on the wavenumber of the pattern (see also Section 4.3.5 for further discussion of the role of CG-8).
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Thus the proposed mechanism fits into the framework of “local
autoactivation–lateral inhibition” (Meinhardt and Gierer, 2000):
the local autoactivation is mediated by cell–cell adhesion; cells get
trapped in cell condensations and as more and more cells are
recruited, there are more and more bound CG-1A molecules
available for cell adhesion within these condensations. Lateral
inhibition of condensation is represented by zones of depleted cell
densities around each condensation.

These patterns are not always stable – for certain parameter
ranges, the many small condensations eventually coalesce into one
large condensation. For other parameter ranges, this does not
happen, or at least not in the time frame we simulated. Here cell
condensations remained separated. This is likely due to the
decreased diffusion of the condensates compared to the higher
diffusion of cells in the early phases of condensation; the distances
between cell condensates are likely to be simply too large to allow
for coalescence of condensations by diffusion alone. This is very
similar to the phenomenon of partial sorting (Glazier and Graner,
1993). Both kinds of behavior are observed in experiments: while
the condensations in micromass leg cultures remain separated, in
wing cultures, condensations will eventually coalesce into one
large cell aggregate within several days. This phenomenon appears
to be connected to the fact that leg mesenchymal cells have higher
cell–cell adhesion than wing mesenchymal cells (Downie and
Newman, 1994, 1995; Forgacs and Newman, 2005).

There clearly is a characteristic wavelength to the patterns, as
can be gleaned from Figs. 7 and 8, for instance. (A spectral analysis
of the patterns using Fourier analysis confirms this, see the right
panel of Fig. 10 for an example.) From the above description, it is
not clear that the system should exhibit this feature. A more
intuitive understanding may be obtained from the following
considerations: If two condensations are sufficiently close
together, cells that detach from one of the condensations can
become incorporated into the other neighboring condensation
instead of getting re-absorbed into the one they came from. The
distance at which two condensations are “sufficiently close” so
that they will coalesce, determines the wavelength of the pattern.
This distance depends on the strength of cell–cell adhesion. The

stronger the adhesion, the closer the two condensations can be
next to each other without coalescing, and so the smaller is the
wavelength of the pattern.

Ultimately, no verbal description can make intuitive the exis-
tence of a characteristic wavelength; this can only be established
with certainty by a mathematical linear stability analysis, which
investigates the behavior of solutions of the sinusoidal form
expðikxÞ ¼ cos ðkxÞþ i sin ðkxÞ to the linearized equations. Indeed
in the case at hand, as seen in Fig. 10, only patterns with
wavelength in the interval for positive eigenvalues can form.
While we stress the importance of cell–cell adhesion for pattern
formation, the galectin dynamics play an important part as well.
To illustrate the importance, we conducted further simulations, in
which we used the same initial equilibrium concentrations as in
the left panel of Fig. 11, but increased ~ν, the coefficient for the rate
at which CG-1A is produced in dependence of the amount of
bound CG-8, to ~ν ¼ 1:6; this represents a doubling of the corre-
sponding value for ~ν. The effect is that the CG-1A/CG-8 feedback
loop is activated and the amount of CG-1A is increased. This leads
to more densely distributed condensations and a larger wave-
number of the pattern (see center panel in Fig. 11).

The situation is more subtle if ~μ is increased, the coefficient for
the rate at which CG-8 is expressed in dependence of the amount
of bound CG-1A (see right panel in Fig. 11). Again, the CG-1A/CG-8
feedback loop is activated, leading to a very fast exponential
growth of the concentrations of these molecules, and ultimately
denser condensations, although there appears to be little effect on
the wavenumber of the pattern in this case (see also Section 4.3.5
for a related discussion about simulations we conducted for the
role of CG-8).

It is tempting to speculate that such simple changes in the rate
of expression of one galectin in dependence of the other galectin
may be instrumental in the characteristic changes in the periodi-
city of chondrogenic condensations in vitro corresponding to
stylopod, zeugopod and autopod.

In conclusion, we can summarize our understanding of the
mechanism by which patterns form in this model as follows:
the feedback loop of galectin dynamics sets a characteristic
concentration of CG-1A and CG-8. Spatial patterns in these con-
centrations have very small amplitude and generally seem to play
little role. These characteristic concentrations then determine the
strength of adhesion between cells. Formation of spatial patterns
in the cell densities then arise through cell–cell adhesion. In these
spatial patterns, cells within condensations typically have slightly
higher concentrations of bound counterreceptors on their mem-
branes, as illustrated in Fig. 9. It is possible that this slightly
increased cell–cell adhesion within cell condensations lends addi-
tional stability to the periodic patterns; however, in the parameter
regions we explored that this effect is relatively small.

4.3.5. The role of CG-8
In the above exploration of the pattern forming mechanism, we

showed that cell–cell adhesion mediated by CG-1A plays an
important role. It may be less clear what role CG-8 plays, and
indeed it may seem that it is of secondary importance. To show
that this is not the case, we conducted a number of computational
experiments, which we briefly describe in this section. In fact, the
role of CG-8 is subtle, but important. If its functionality is only
slightly perturbed from the “control case” (by changing the
expression rate and/or the affinity of binding to counterreceptors),
the results are consistent with CG-8's role as an effective inhibitor
of condensations, that is, a combination of a lower expression rate
and a lower binding rate to counterreceptors leads to more
condensations (Fig. 13). However, CG-8 is also necessary for
forming condensations, that is, if its functionality is completely

Fig. 12. Region in ~c 1� ~αK parameter space where the reduced system can produce
spatial patterns. For details see the text. Other values are r0 ¼ 0:04; ~δ2 ¼ 1;
~γ2 ¼ 2; dR ¼ 0:04; ~π8 ¼ 1; ~ν ¼ 0:8; ~μ ¼ 2.
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shut down, then no condensations form. This is due to the fact that
CG-8 forms a positive feedback loop with CG-1A, and a complete
“shutdown” leads to a low concentrations of CG-1A, which in turn
means that cell–cell adhesion is too weak to lead to condensations.

Accordingly, our simulations in this section fall into two
categories: one in which its functionality is slightly perturbed
from the control case, displaying the property of CG-8 as an
inhibitor of condensations in the above sense (Section 4.3.6), and
one where its functionality is severely limited, leading to the
inability of the system to create patterns in the spatial distribution
of cells (Sections 4.3.6.1 and 4.3.6.2).

4.3.6. Perturbations of CG-8 functionality
To investigate the action of CG-8 further, we conducted a numerical

study of the effect of perturbing the functionality of CG-8 on the
pattern of spatial condensations. We concentrated on two parameters:
the coefficient μ for the rate at which CG-8 is expressed in dependence
of the amount of bound CG-1A (see (2.9), and the counterreceptor
binding coefficients β8;1 and β1;1, which describe the binding of CG-8
to the counterreceptors of CG-8 and the shared counterreceptor (i.e.,
CG-1A counterreceptor), respectively (see Table 2). In the non-
dimensionalization we chose, this corresponds to changes in the
dimensionless parameter ~μ (see Table 4) and changes in the reference
concentrations for CG-8, ĉu8, respectively (see Table 3).

Results are shown in Fig. 13. These simulations are consistent with
experimental results, indicating the inhibitory effect of CG-8 on
condensation numbers. Qualitatively, the combination of a low
production rate of CG-8 and a low affinity of CG-8 to bind to
counterreceptors results in higher condensation number. In general,

higher production rates of CG-8 by CG-1A (parameter μ) correspond
to lower condensation numbers, consistent with CG-8's inhibitory
effect on condensations. In general, changing the production rate of
CG-8 alone has this effect as well, but the combined effect of both
changes in the production rate of CG-8 and the binding affinity to
counterreceptors simultaneously yield a stronger effect.

The effect of changing the binding rate of CG-8 to counter-
receptors alone is more subtle: on the one hand, lowering the
binding affinity to the shared counterreceptor (i.e., CG-1A counter-
receptor) tends to decrease the competition of CG-8 for CG-1A
counterreceptor and hence potentially means increased cell–cell
adhesion and hence higher condensation numbers. On the other
hand, the binding of CG-8 to its counterreceptor is required for the
production of CG-1A, and hence lowering this binding rate leads to
a decreased production of CG-1A, which can lead to decreased
cell–cell adhesion and a corresponding decrease in the condensa-
tion numbers. The net effect of decreasing the CG-8 binding rate is
a combination of these two opposing effects. Correspondingly,
Fig. 13 does not display a straightforward relation between the
counterreceptor binding rate and the condensation number (see
also the discussion in Section 4.2.4).

4.3.6.1. Repressing binding to counterreceptors. While the previous
section illustrated that CG-8 acts effectively as an inhibitor of
condensation numbers, we also conducted several simulations to
show that it is nevertheless indispensable for condensation, that
is, if CG-8 functionality is completely shut down, then no
condensations can form.

In the first such illustration, we simulated repressing the
binding of galectins to counterreceptors. This results in the
inability of cells to form condensations. (Note that the binding of
CG-1A to its counterreceptors is also prevented; for simulations in
which only CG-8 functionality was affected, see the next section.)

In our simulations, the galectin/counterreceptor binding coeffi-
cients α1, β8;1 and β1;1 (see Table 2) were decreased to a fraction of
the “control” values, decreasing drastically the rate at which
galectins bind to counterreceptors. In the non-dimensionalization
we chose, this corresponds to an increase in the reference concen-
trations ĉu1 and ĉu8 (see Table 3). We conducted numerical simula-
tions with the same parameter set as the one used in Fig. 8, but
with α1, β8;1 and β1;1 decreased to 10% of their original values.
Practically, this means that the non-dimensionalized initial values
for cu1 and cu8 are decreased by 90%.

The results are shown in Fig. 14. No spatial patterns in the cell
density can form. This result is easily understood by considering
the cell adhesion flux term KðRÞ in (3.16): due to low initial values
of cu1 and cu8, the cu1=c

u
8 interaction effectively leads to a negative

feedback loop, which in turn means that cu1 further decreases.
The cu1�dependent term in KðRÞ is thus small, and therefore the
cell–cell adhesion flux is too small to initiate formation of spatial
patterns in the cell density.

We tested these model predictions with in vitro experiments in
which a functional inhibitor of both CG-1A and CG-8 was added to
cultures, see Section 4.3.6.3

4.3.6.2. Simulation of absence of CG-8. To demonstrate the
importance of CG-8 for cell patterning, we conducted two
experiments where crucial effects of CG-8 were taken out of
the model.

In the first such test, we considered the Eqs. (3.9)–(3.11) again,
but now set ∂cu8=∂t ¼ 0 instead of (3.11), set ~ν ¼ 0 in (3.10) and
eliminated the derivative with respect to T8 in (3.9). This corre-
sponds to eliminating CG-8 from the dynamics. In in silico
experiments, we used the same data and the same initial condi-
tions as in the “control” case in Fig. 8. This system did not display

Fig. 13. Results of the simulations of condensation number following changes in
the parameters governing CG-8 expression and function. Three-dimensional bar
graph showing the number of condensations for several different values of two
parameters: CG-1A-dependent rate of expression of CG8 (left horizontal axis) and
binding affinity of CG-8 to counterreceptors (right horizontal axis). The same
parameter set as in Fig. 8 was used; the values of Fig. 8 are marked as the "control"
case. The graphs illustrate that CG-8 acts as an effective inhibitor of condensation
numbers; in particular, a low production rate combined with a low binding affinity
to counterreceptors leads to increased condensation numbers (bottom left region
of the graph) (see also Fig. S3 in the Supplementary Material, where plots of the cell
densities for the same data are shown).
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spatial patterns; again the reason was that the absence of the CG-
1A/CG-8 feedback loop led to a rapid decrease of c1u, which meant
that the cell-adhesion flux KðRÞ was too low to initiate cellular
patterning (results not shown).

We also conducted experiments where the action of CG-8 was
restricted in a slightly less severe way, namely by setting the
parameter μ to zero in (3.10). This means that CG-8's ability to
initiate CG-1A synthesis is eliminated. All other terms in (3.9)–
(3.11) were kept the same. Again, simulation shows that no spatial
patterns in the cell density can form, because again the CG-1A/CG-
8 feedback loop responsible for maintaining high levels of CG-1A
was eliminated (Fig. 15).

4.3.6.3. Experimental confirmation of some simulation results.
The predictive power of the model was tested by in vitro
experimental confirmation of its prediction, based on simulations,
that treatment of cultures with a functional inhibitor of both CG-1A
and CG-8 (e.g., lactose) would lead to breakdown in condensation
formation and patterning (see Section 4.3.6.1). Freshly prepared
micromass cultures were treated with serum-free defined medium
alone, or supplemented with 20 mM lactose or 20 mM sucrose (a

control for steric and osmotic effects). The cultures were grown for
48 h, fixed and stained with peanut agglutinin (PNA), a condensation
marker. When compared to untreated control cultures, lactose-
added cultures showed lack of condensations, with no PNA
patterns discernible. In contrast, sucrose-added cultures showed a
condensation pattern similar to untreated cultures (Fig. 16). The
results of experimental perturbation of the CG-1A-CG-8 network
therefore confirm the behavior of the perturbed in silico network.

4.4. Investigation of a possible “morphostatic” mechanism

The mechanism discussed in the previous section crucially
depends on cell motility and cell–cell adhesion. Emergence of
patterns in the spatial distribution of galectins forms concurrently
with the emergence of patterns in the cell distribution, and the
two processes are interdependent. According to the classification
by Salazar-Ciudad et al. (2003), such processes are called “mor-
phodynamic”. This is qualitatively different from mechanisms
which involve a chemical prepattern. In such mechanisms, a
pattern in some morphogen is set up first, which then induces
the cells to move toward the centers of high concentration and
thus serves as the template for the cell distribution. Such chemical

Fig. 14. Results of simulations which severely restrict binding of galectins to counterreceptors. The counterreceptor binding coefficients α1, β8;1 and β1;1 (see Table 2) were
decreased by 90%. The same parameter set as in Fig. 8 was used. As indicated in the text, the non-dimensionalized initial conditions for c1u and c8

u are decreased by 90%
compared to the control case of Fig. 8. The initial distributions for the morphogenetic density were chosen as Gaussian distributions in T1 and T8 as given in (4.1). The means
T1 and T8 were chosen such that the initial values satisfy ~γ ðcu1 ; cu8 ; T 1Þ ¼ 0 and ~δðcu8; T 8Þ ¼ 0, so that initial production of T1 and T8 are in equilibrium (see (3.14) and (3.15)).
Initial distributions are dashed, distributions at the final time t¼1 are solid. The graphs illustrate that there is a breakdown of the feedback loop between the
counterreceptors, which causes all concentrations to decrease, and cell–cell adhesion is insufficient to form spatial patterns. Top left: cell density as a function of distance.
Note that no spatial patterns are displayed. Top right: spatial distribution of unbound CG-1A. Note that these levels decrease significantly from the initial levels. Bottom left:
spatial distribution of unbound CG-8. Again these levels decrease significantly from the initial levels. Bottom right: frequency distribution of the CG-1A counterreceptor
molecules on cell membranes. Note that the mean number of CG-1A counterreceptors decreases from the initial value.
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prepattern mechanisms are referred to as “morphostatic” accord-
ing to the classification by Salazar-Ciudad et al. (2003).

In this section, we investigate whether the original full model
involving freely diffusible galectins and the morphogenetic density
as given in (2.2), (2.8) and (2.9) can actually give rise to “chemical
prepatterns”; that is whether it is possible for some parameter
ranges to generate patterns even in the absence of any cell motility.

To do so, we first derive in Section 4.4.1 a new system of
equations from Eqs. (2.2), (2.8) and (2.9) under the assumption of
zero cell motility. We call this system the “core morphostatic
system”. To investigate whether this system can give rise to
chemical prepatterns, we set up two minimum requirements,
formulated at the end of Section 4.4.2. We then argue that the
“core morphostatic” system does not satisfy one of these

Fig. 15. Results of simulations where the effect of CG-8 on CG-1A synthesis was eliminated. The same parameter set as in Fig. 8 was used, but with ~μ ¼ 0 The initial
conditions were chosen as in the “control case” of Fig. 8. Initial distributions are dashed, distributions at the final time t¼1 are solid. Top left: cell density as a function of
distance. Note that no spatial pattern is displayed. (The final pattern has a very small amplitude, but is negligible compared to the “control” case in Fig. 8.) Top right: spatial
distribution of unbound CG-1A. Note that due to the absence of CG-1A synthesis, these levels decrease significantly from the initial levels. Bottom left: spatial distribution of
CG-1A bound to its counterreceptor. Again, these decrease significantly in the time frame, which in turn decreases cell–cell adhesion. Bottom right: distribution of CG-1A
counterreceptor. Note that the average concentration of CG-1A counterreceptor also decreases during the time frame.

Fig. 16. Addition of galectin binding inhibitor lactose decreases condensation number and size in culture. (a) Nodular pattern of condensations marked by Arachis hypogea
lectin (PNA) staining of a fixed 2-day control leg culture. (b) Culture treated with 20 mM lactose shows a decrease in number of condensations with a uniform decrease in
their sizes. (c) Culture treated with 20 mM sucrose (control non-specific sugar) does not show a significant change in number and size of condensations. Images (a–c) are at
the same magnification and photographed with a 16� objective.
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conditions, and thus that it is not capable of pattern formation.
(We discuss additional assumptions on the regulatory galectin
network that can indeed lead to patterns, and discuss the findings
in the Supplementary Text S1.)

4.4.1. “Morphostatic limit” of the full galectin system
To consider the absence of cell motility, we set the cell

diffusivity DR and the adhesion strength αK both to zero in (2.2).
It follows then from (2.2) that

∂
∂t

Z
Rðt; x; c1; c88; c18;ℓ1;ℓ8Þ dP ¼ 0:

(Here we used the notation dP as in (2.1).) Thus the cell density
Rtotðt; xÞ ¼

R
R dP is locally conserved, as is consistent with zero

cell motility. We assume that the initial cell density satisfies
Rtotð0; xÞ ¼ R0 ¼ const, so that Rtotðt;xÞ ¼ R0 for all t.

We then define the concentration of CG-1A bound to the
shared counterreceptor as

G1ðt;xÞ ¼
Z

c1R dP;

and similarly

G1
8ðt;xÞ ¼

Z
c18R dP CG� 8 bound to the shared counterreceptor

G8
8ðt;xÞ ¼

Z
c88R dP CG� 8 bound to its counterreceptor

L1ðt; xÞ ¼
Z

ℓ1R dP shared counterreceptors; unbound

L8ðt; xÞ ¼
Z

ℓ8R dP CG� 8 counterreceptors; unbound

In the following, we assume that all these quantities are finite at
each spatial point and for all time. Using (2.2), (2.8) and (2.9),
we can now derive a system of equations for the above concen-
tration and the free galectin concentrations (This can be done by
(formal) integration by parts from (2.2) using the boundary
conditions (2.7).):

∂G1

∂t
¼ α1cu1L1�α2G1 ð4:6Þ

∂G8
8

∂t
¼ β8;1c

u
8L8�β8;2G

8
8 ð4:7Þ

∂G1
8

∂t
¼ β1;1c

u
8L1�β1;2G

1
8 ð4:8Þ

∂L1
∂t

¼ γ1G1�γ2L1�
∂G1

∂t
�∂G1

8

∂t
ð4:9Þ

∂L8
∂t

¼ δ1�δ2L8�
∂G8

8

∂t
ð4:10Þ

∂cu1
∂t

¼D1∇2cu1þνG8
8�α1cu1L1þα2G1�π1cu1 ð4:11Þ

∂cu8
∂t

¼D8∇2cu8þμG1�β1;1c
u
8L1þβ1;2G

8
8�β8;1c

u
8L8þβ8;2G

8
8�π8cu8:

ð4:12Þ
We will assume the two galectin diffusion coefficients to be the
same: D1 ¼D8. Above we also used γ ¼ γ1c1�γ2ℓ1 for the produc-
tion rate of CG-1A counterreceptor.

We call the above system of equations the “core morphostatic
system”. In Supplementary Text S1, we find a non-dimensionalized
form for these equations, see (S1.8)–(S1.14).

4.4.2. Linear stability analysis
We investigate whether the system (4.6)–(4.12) can sponta-

neously give rise to spatial patterns from the equilibrium concen-
trations with added random chemical noise. This investigation is
done by a linear stability analysis. There is a unique steady state
ðG1 ;G

8
8 ;G

1
8 ; L1 ; L8 ; c

u
1 ; c

u
8 Þ of Eqs. (4.6)–(4.12). (Formulas for the non-

dimensionalized version of the system (S1.8)–(S1.14) are given in
(S1.16) in the Supplementary Material.)

To investigate whether the system (4.6)–(4.12) can give rise to
patterns, we consider the linearization:

∂tU ¼DUxxþAU

where U ¼ ðG1�G1 ;G
8
8�G8

8 ;G
1
8�G1

8 ; L1�L1 ; L8�L8 ; cu1�cu1 ; c
u
8�cu8 Þ

describes a vector of perturbations of the relevant chemical
concentrations from their steady states. The linearization matrix
A and the diffusion matrix D are given explicitly in the Supple-
mentary Material.

Consider solutions of the form U ¼ eikxþ stU0, where k is the
wave-vector of the spatial pattern, s the temporal growth rate of
the pattern with wavenumber k and U0 a constant vector describ-
ing the relative sizes of the amplitudes of the pattern for each
molecular species. The dispersion relation then becomes

sU0 ¼ ðA�k2DÞU0;

and hence s¼ sðkÞ is an eigenvalue of the matrix A�k2D, where we
used the notation k2 ¼ jkj2. Stationary patterns of wavenumber k
can form if s(k) is real and positive. We define

smaxðk2Þ ¼maxðEigenvaluesðA�k2DÞÞ ð4:13Þ
Hence patterns of wavenumber k can form if smaxðk2Þ40.

We now use the linear stability analysis to address the question
whether the core morphostatic system (4.6)–(4.12) is sufficient to
explain basic pattern formation as found experimentally. Our
starting point is that based on the experimental evidence, the
system has to display at least the following “minimum” properties:

Criterion 1: The spatially homogeneous case (wavenumber k¼0)
is unstable, since the addition of CG-1A leads to a
rapid upregulation of CG-8 and vice versa. So
smaxð0Þ40.

Criterion 2: The function smaxðk2Þ must attain a positive maximum
for some wavenumber k40. This is because a spatial
pattern with a characteristic length scale forms spon-
taneously in experiments.

While Criterion 1 can indeed be met, we give evidence that the
core morphostatic system (4.6)–(4.12) does not meet Criterion
2 for any combination of parameters (see Fig. 17 for a generic plot
of the function smaxðk2Þ). In fact, a numerically aided computation
shows that smaxðk2Þ is a nonincreasing function of the wavenumber k2,
see Section S1.2 of the Supplementary Text. (Thus Fig. 17 shows a
generic plot of smax k

2.) It follows that the system (4.6)–(4.12) does not
meet Criterion 2. Thus cell motility appears to be a crucial component
of the system; without it, no patterns will form.

In Section S1.3 of the Supplementary Text, we address the
further problem of what additional hypothetical regulatory inter-
actions in the galectin network can lead to a system that is capable
of generating spatial patterns. The Supplementary Text also con-
tains an additional discussion of the results of this section.

5. Summary and outlook

We set up a mathematical model of chondrogenic condensation
of mesenchymal cells involving cells, two galectins (CG-1A and
CG-8) and their respective counterreceptors. We incorporated the
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“minimum” regulatory network of galectin dynamics as sketched
in Fig. 2. We showed that for a broad range of parameters, the
system can spontaneously generate patterns of peaks in the cell
density if started from equilibrium with small added noise. If the
initial concentration of CG-1A was increased, simulating adding
CG-1A to cultures, this results quite reliably in an increase in the
number of peaks. If the initial concentration of CG-8 was
increased, the results depended more subtly on the parameter
ranges: the number of peaks was found to decrease for some
parameter sets, but also to remain the same or increase in others.
A determining factor was the overall percentage of unbound CG-
1A counterreceptors among all CG-1A counterreceptors: If this
percentage was too high, the result was no change in the number
of condensations, or even an increase in the number of condensa-
tions. This behavior allowed us to make a number of experimen-
tally testable predictions, which are listed at the end of this
summary.

A combination of numerical simulations and stability analysis
revealed the mechanism of pattern formation in our model. We
found that the strength of cell–cell adhesion was a crucial
determinant of the capability for pattern formation, and also of
the wavenumber of the pattern. Small initial differences in the cell
density lead to the effective movement of cells toward areas of
higher concentration, where cells tend to get trapped.

These multiple condensations typically do not coalesce into one
large condensation in our simulations, at least not in the time
frame we simulated. This is likely due to the decreased diffusion of
the condensates compared to the higher diffusion of cells in the
early phases of condensation.

The strength of cell–cell adhesion in turn is determined by the
number of CG-1A molecules bound to its counterreceptors on cell
membranes. This consideration explains the results of the simula-
tions when the initial amount of CG-1A was increased: this led to
the formation of more complexes of CG-1A and its counterrecep-
tor, an effect that was additionally reinforced by the fact that such
complexes exert a positive control over the expression of CG-1A
counterreceptor. The outcome of added CG-8 is subtler: there are
two somewhat opposing effects. On the one hand, this leads to an
increased production of CG-1A; on the other hand, the added CG-8
molecules may bind to shared counterreceptors which had pre-
viously been bound to CG-1A, thus competing with CG-1A
molecules for available counterreceptors. The first of these effects
potentially leads to an increase in cell–cell adhesivity; the second
to a decrease in adhesivity. In order for the second effect to
dominate, it appears to be important that the number of unbound
shared counterreceptor not be too large – otherwise, the added

CG-8 will tend to bind to such unbound shared counterreceptors
instead of occupying shared counterreceptors which have pre-
viously been bound to CG-1A.

We were also able to show that the model produces a spatial
pattern in the distribution of CG-1A and CG-8, bound to their
respective counterreceptors, which reflects the cell density. We
showed that this was not an artifact of increased cell densities in
condensations, but that cells within condensations actually tended
to have higher concentration of such complexes of galectins with
their counterreceptors (see Fig. 9). These patterns are not due to a
corresponding pattern in the ECM-bound galectins; in fact, there
tended to be no such spatial pattern in these concentrations. Even
if the diffusivity of galectins in the ECM was assumed to be
effectively infinite, a pattern in the complexes of CG-1A bound to
its counterreceptor appeared, albeit no such pattern appeared in
the complexes of CG-8 bound to its counterreceptor, see again the
top row of Fig. 9.

The mechanism of the appearance of such spatial patterns in
membrane-bound CG-1A and CG-8 appears to be as follows: in the
initial aggregation process, cells that have comparably many CG-1A
molecules bound on their membranes and are thus “stickier” than
other cells, tend to get more easily trapped within condensations and
are thus preferably found within the aggregates. Moreover, the
positive control of CG-1A over its counterreceptor means that more
CG-1A will be produced and bound to counterreceptors within
condensations. This is additionally reinforced by the feedback of CG-
1A and CG-8, which is “turned on”within condensations. Correspond-
ingly, the smaller the diffusion coefficients of galectins, the more
pronounced are the spatial galectin patterns (see again Fig. 9).

We finally treated the question of whether spatial pattern for-
mation was also possible with zero cell motility, that is, whether
the galectin network alone can generate spatial patterns. Through
a linear stability analysis, we argued that this is not possible for
any parameter set. With certain additional hypothesis, we found
that such pattern formation capabilities could be established, but
the assumptions we had to make were quite implausible from a
molecular point of view.

Our main objective was the analysis of the biological processes,
and a mathematically completely exhaustive treatment is beyond
the scope of this paper. For instance, we implicitly assumed the
existence and uniqueness of solutions to our model equations, and
the positivity of solutions (as proved for the later-acting TGF-β-
inhibitor–fibronectin network in the developing limb, Alber et al.,
2005.) We also used an ad hoc approach to weak solutions (in this
case, involving Dirac measures) without explicitly formulating a
weak version of our equations or stating the corresponding
function spaces for solutions. We plan to perform these analyses
in a future publication.

On the modeling side, we did not aim for quantitatively
realistic simulation results; given the large number of unknown
parameters (such as expression rates of various proteins, or
adhesion strength parameters), our goal was rather a qualitative
and comparative analysis and this was reflected in the model's
prediction of the behavior of the system. Finally, it should be noted
that while many of the modeling components (such as diffusion
and protein secretion) are quite standard, the important modeling
of cell–cell adhesion is somewhat less standard and there is
currently still some debate about how to incorporate cell–cell
adhesion into continuous models. (Modeling cell–cell adhesion in
discrete models is arguably much better understood; see for
instance, the Cellular Potts Model; Glazier and Graner, 1993.) Here
we followed the approach of Armstrong et al. (2006), who modeled
cell–cell adhesion via an effective adhesion flux term. This leads to
nonlocal equations, i.e., dynamics involving an integral over relevant
quantities. Other approaches exist, for instance by Anguige and
Schmeiser (2009), who derived an equation from the continuous

Fig. 17. Illustrative plot of smaxðk2Þ, the maximum eigenvalue of the matrix A�k2D
as a function of the square of the wavenumber k2 for the “core morphostatic”
system (4.6)–(4.12). (The non-dimensionalized values of the parameters were
chosen as πn

G1
¼ πn

G1
8
¼ πn

G8
8
¼ πn

L1
¼ πn

L8
¼ πn

cu8
¼ πn

cu1
¼ 1, see Eqs. (S1.8)–(S1.14) in the

Appendix.) Note that the function is decreasing monotonically, and hence no
pattern with a typical wavenumber k can form spontaneously from random noise.
As shown in the text, this is generically the case for the “morphostatic” system
(4.6)–(4.12).
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limit of a model involving a biased random walk on a discrete lattice
(see also Alber et al., 2006, 2007). However, we showed that the
results do not qualitatively change when using different functional
forms of cell–cell adhesion (linear or logistic expressions), and we
expect in general that the results are largely independent of the
details of specific cell–cell adhesion modeling components.

Concerning the biological implications of this work, the
described pattern forming mechanism is unusual in being inher-
ently morphodynamic in that its developmental outcomes depend
on signaling and cell rearrangement being exerted in a simulta-
neous fashion. It shares this property with the mechanism for tooth
crown patterning described by Salazar-Ciudad and Jernvall (2010).
For the present case, the requirement for adhesion-driven cell
movement to form any nonuniform pattern at all in the multiscale
two-galectin network was unclear apart from the mathematical–
computational analysis presented here, highlighting the usefulness
of such analysis in disclosing non-intuitive implications of experi-
mental results. In addition, the experimental result shown in Fig. 16
confirmed a specific prediction of this model that would not
necessarily be indicated by other dynamical interpretations.

Tests of the model in the future can focus on a number of its
further predictions:

1. A crucial condition for the effectiveness of adding CG-8 to
antagonize condensations is that the percentage of unbound
CG-1A counterreceptors among all of CG-1A counterreceptors
be small. If this percentage can be increased, e.g., by over-
expression of an eventually characterized counterreceptor of
CG-1A, we predict that the effectiveness of CG-8 as an antago-
nist of condensations will decrease.

2. In a similar vein, we predict that if the affinity of CG-8 binding
to its shared counterreceptor with CG-1A (as opposed to
binding to its unique counterreceptor) can be decreased, the
effectiveness of CG-8 as an antagonist of condensations will
decrease. (In terms of the model, this corresponds to decreas-
ing the dimensionless parameter f, see the discussion in Section
4.2.4 and also Table 5.)

3. In the model, no cellular patterns can form in the absence of cell–
cell motility. Thus an immediate prediction is that decreasing cell
motility in cultures will decrease the number and density of the
precartilage condensations, and not simply attenuate the degree
of cell packing at an otherwise unperturbed set of sites.

4. According to Sheth et al. (2012), the effects on the digit pattern
in the mouse of the levels of Hoxa13 and Hoxd11–13 gene
products are exerted through the parameters of a Turing-type
reaction–diffusion mechanism underlying this process. The
model presented here represents such a pattern generating
reaction–diffusion system, which though pertaining specifically
to the avian system, has a firmer experimental and molecular
basis than any yet available for mammalian embryos. The basic
similarities in Hox gene action in limb development across the
amniotes suggest that certain of the parameters in (3.5)–(3.7)
would be suitable loci for the computational investigation of
the specific roles of the various Hox genes.

Appendix A. Convergence to Dirac measure

We consider here a simplified version of the conservation law
for the morphogenetic density (2.2) and show that solutions
converge to a Dirac (point) measure. Consider the equation for
Rðt; TÞ given by

∂R
∂t

¼ � ∂
∂T

ðαðTÞRÞ; ðA:1Þ

with

αðTÞ ¼ a�bT ðA:2Þ
for constants a; b40. Note that αðTÞ has the unique root T0 ¼ a=b.
The initial condition is

Rðt ¼ 0; TÞ ¼ R0ðTÞ
for 0rTo1. We assume that R0 is nonnegative and C1 on ð0;1Þ
and that we can extend it to a C1-function on ð�1;1Þ by setting
R0ðTÞ ¼ 0 for Tr0. We also assume thatZ 1

�1
R0ðTÞ dT ¼ 1:

Using the method of characteristics, one obtains the following
explicit expression for the solution of (A.1) with boundary condi-
tion Rðt; T ¼ 0Þ ¼ 0:

Rðt; TÞ ¼ R0
a
b
þ T�a

b


 �
ebt


 �
ebt :

We now show that

Rðt; TÞ dT-δT�ða=bÞ as t-1

in the sense of weak convergence of measures (Billingsley, 1999).
Here Rðt; TÞ dT denotes the time-dependent absolutely continuous
(with respect to the Lebesgue measure) measure on ½0;1Þ induced
by Rðt; TÞ, and δT�a=b denotes the Dirac (point) measure on ½0;1Þ
supported at T ¼ a=b. That is, for any Borel set ID ½0;1Þ, we have
δT�a=bðIÞ ¼ 1 if a=bA I and δT�a=bðIÞ ¼ 0 if a=b=2 I.

Indeed, let ψACð½0;1ÞÞ be a bounded continuous function.
Extend it to all of R by setting ψðTÞ ¼ 0 for To0. We then haveZ 1

0
ψðTÞRðt; TÞ dT ¼

Z 1

�1
ψðTÞRðt; TÞ dT

¼
Z 1

�1
ψ e�btSþa

b


 �
R0

a
b
þS


 �
dS-ψ

a
b


 �
ðt-1Þ

In a similar vein, one can prove that if αðTÞ is any differentiable
function with α0ðTÞo0 and a (unique) root T040, then the
solution to (A.1) converges to the Dirac measure δT�T0 in the
sense of weak convergence of measures.

Appendix B. Formal steady state of Eqs. (3.9)–(3.11)

We now analyze a (formal) steady state of the system of
Eqs. (3.9)–(3.11). This discussion can be made more rigorous using a
suitable weak formulation, but we constrain ourselves to a formal
approach. This formal steady state is the quadruple ðcu1; cu2; T 1; T 8Þ
such that c1ðt; xÞ ¼ cu1, c1ðt; xÞ ¼ cu1, Rðt; x; T1; T8Þ ¼ δðT1�T 1Þ�
δðT8�T 8Þ is a solution, where again δ denote Dirac delta distributions.
The corresponding equations are

~γ ðcu1; cu8; T 1Þ ¼ 0; ~δðcu8; T 8Þ ¼ 0; ~ν
cu8

cu8þ1
T 8�cu1 ¼ 0;

~μ
cu1

cu1þ f cu8þ1
T 8� ~π8 c

u
8 ¼ 0:

This yields the following values:

cu1 ¼ ~μ ~ν
~c 1 ~γ2

2 ~μ ~ν� ~γ2 ~δ2 ~π8
ðB:1Þ

cu8 ¼
cu1 ~δ2
~ν

ðB:2Þ

T 8 ¼
1þcu8
~δ2

ðB:3Þ
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T 1 ¼
~δ2 ~π8ð1þcu1þ f cu8Þ

~ν ~μ
ðB:4Þ

A positive steady state exists if cu140.

Appendix C. Supplementary data

Supplementary data associated with this paper can be found in
the online version at http://dx.doi.org/10.1016/j.jtbi.2013.12.004.
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