
A Framework for Three-Dimensional
Simulation of Morphogenesis

Trevor M. Cickovski, Chengbang Huang, Rajiv Chaturvedi, Tilmann Glimm, H. George E. Hentschel,

Mark S. Alber, James A. Glazier, Stuart A. Newman, and Jesús A. Izaguirre

Abstract—We present COMPUCELL3D, a software framework for three-dimensional simulation of morphogenesis in different
organisms. COMPUCELL3D employs biologically relevant models for cell clustering, growth, and interaction with chemical fields.
COMPUCELL3D uses design patterns for speed, efficient memory management, extensibility, and flexibility to allow an almost unlimited
variety of simulations. We have verified COMPUCELL3D by building a model of growth and skeletal pattern formation in the avian
(chicken) limb bud. Binaries and source code are available, along with documentation and input files for sample simulations, at http://
compucell.sourceforge.net.

Index Terms—Cellular Potts Model (CPM), biological development, reaction-diffusion, cellular automata, morphogenesis, Extensible

Markup Language (XML).

�

1 INTRODUCTION

THIS paper presents COMPUCELL3D, a three-dimensional
(3D), cell-centered, multiscale [17] framework for

modeling morphogenesis. Morphogenesis is the structural
development of an organism and its organs, involving cell
differentiation, growth and migration, bulk changes in
tissue shape, and the secretion, resorption and diffusion of
extracellular materials (e.g., proteins and tissue polysac-
charides). Cell interactions via secreted and membrane-
bound chemicals generate biologically significant pattern-
ing instabilities that we can describe mathematically and
implement computationally [32], [35], [38], [46], [50], [59],
[71], [96], allowing us to model morphogenesis [37]. For this
mathematical and computational modeling of development,
the cell provides a more useful level of abstraction than the
subcellular level. The cell-centered approach studies how
the behaviors of individual cells collectively influence
behavior at higher levels, such as tissues and organs. For
example, in some cases, such as the function of an inductive
signal, what happens “behind the scenes” is irrelevant to

macroscopic model behaviors, since all that matters is that
cells respond to the signal correctly. Meinhardt [60] recently
stated that “The role of the cell as a module of development
can hardly be overestimated” and Von Dassow and Meir
[90] argue that the closest thing to data hiding in nature is
the cell. Cell-level modeling helps tackle complexity and
makes modeling feasible. For example, a typical cell can
contain roughly 105 � 106 gene products. Estimating po-
tential interactions between all of these products would be
needlessly complicated and extremely expensive in time
and space when run on a computer, even a highly parallel
machine. By treating cells phenomenologically and ignoring
intracellular behaviors, we can reduce multiple complex
interactions to a small set of behaviors such as movement,
division, death, differentiation, shape change, force exer-
tion, secretion and uptake of molecules, and changes in the
distribution of surface properties. At the other extreme,
macroscopic models like Physiome [10] which operate at the
level of tissues, while highly efficient, cannot reproduce
some experimental observations that arise from finer-
grained behaviors at the cell level.

Merks and Glazier [61] provide a logical set of steps for
building a cell-centered model:

1. Infer individual cell behaviors from biological
experiments. We can obtain some behaviors of
specific cells from the literature. Sometimes, we
need additional experimentation for specific numer-
ical information.

2. Outline a conceptual model of the cell behaviors.
3. Translate this abstraction into a mathematical model.
4. Implement the mathematical model computationally

into a simulation. Although the conceptual modelmay
apply to a single cell, computationally,we can combine
multiple single-cell models to determine if the model
suffices to describe the tissue-level interactions and
functionality found experimentally.

5. If the simulation results do not match experimental
results, return to the experiment to identify inaccura-
cies or missing information or parameters in the
model, e.g.,usinghigh-throughputparameter studies.

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 2, NO. 4, OCTOBER-DECEMBER 2005 273

. T.M. Cickovski and C. Huang are with the Laboratory for Computational
Life Sciences, Department of Computer Science and Engineering,
University of Notre Dame, 325 Cushing Hall, Notre Dame, IN 46556.
E-mail: {tcickovs, chuang}@nd.edu.

. R. Chaturvedi is with the Department of Computer Science and
Engineering, University of Notre Dame, 384 Fitzpatrick Hall, Notre
Dame, IN 46556. E-mail: rchaturv@nd.edu.

. T. Glimm and H.G.E. Hentschel are with the Department of Physics,
Emory University, 400 Dowman Drive, Atlanta, GA 30322.
E-mail: tglimm@emory.edu, phshgeh@physics.emory.edu.

. M. Alber is with the Department of Mathematics, University of Notre
Dame, 255 Hurley Building, Notre Dame, IN 46556.
E-mail: malber@nd.edu.

. J.A. Glazier is with the Department of Physics, Indiana University, Swain
Hall West 159, Bloomington, IN 47405. E-mail: glazier@indiana.edu.

. S.A. Newman is with the Basic Science Building, New York Medical
College, Valhalla, NY 10595. E-mail: newman@nymc.edu.

. J.A. Izaguirre is with the Department of Computer Science and
Engineering, University of Notre Dame, 326C Cushing Hall, Notre Dame,
IN 46556. E-mail: izaguirr@nd.edu.

Manuscript received 2 Aug. 2004; revised 25 Jan. 2005; accepted 25 Apr.
2005; published online 1 Nov. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tcbb@computer.org, and reference IEEECS Log Number TCBB-0083-0804.

1545-5963/05/$20.00 � 2005 IEEE Published by the IEEE CS, CI, and EMB Societies & the ACM

Conversely, parameter sweeps of the computational
model can identify possible behaviors to search for
experimentally. Additional inputs can refine the
model: For example, we can measure the relative
strength of cell adhesion between different cell types
from surface tension experiments [30]; knock-out
experiments can validate the role of identified signals;
and modeling the relevant gene networks can com-
plete the picture the model offers.

6. Once the simulation results match experimental
results, study further test cases by, e.g., removing a
parameter and recording the changes in behavior. If
we observe accurate behavior at the tissue level even
though we have removed certain elements of the
model, we have a smaller set of cell behaviors or
components that can still accurately simulate experi-
mental results. We can eventually obtain a minimal
necessary set of single-cell behaviors through re-
peated testing.

7. Once we have established this minimal set of
behaviors, we determine which gene networks drive
this set of behaviors, and how they operate. At this
point, we can ask questions about the factors which
result in abnormal growth—as we have done for a
simpler model of chondrogenesis which we have
experimentally validated using cell cultures (cf.
Section 6).

The Cellular Potts Model (CPM) provides a well-defined,
cell-centered framework for simulations of morphogenesis
[35]. The CPM is a grid-based, stochastic model designed to
accurately simulate cell interactions and movement. It can
reproduce cell membrane fluctuation in a way that matches
experiments on cell dynamics, even though it neglects
cellular substructures like the cytoskeleton. It models
mesenchymal cells, which are relatively isotropic, without
requiring further extensions. Extra terms in the CPM
Hamiltonian allow the CPM to model highly polar cells,
e.g., [94], [93], [62]. Some of the many studies using the
CPM include Mombach and Glazier’s [67] study of chicken
retinal cells and Marée’s [55], [57], [58], [56] study of
Dictyostelium discoideum. Many of these studies include
direct, quantitative validation of the CPM results against
experiments. The idea that cell-cell interactions depend on
surface-tension forces and their analogues goes back well
before Thompson, who was one of the first to attempt a
semiquantitative comparison [84]. Steinberg then devel-
oped this idea into his Differential Adhesion Hypothesis
[80], [81], [30], [26]. Experimental studies on cell sorting in
vitro [30], [26] and, more recently, in vivo [33], [34], [36],
support this approach to tissue morphogenesis based on
consideration of surface forces akin to those that govern the
behavior of bubbles and foams.

Recent modifications to the CPM extend its biological
accuracy. Ouchi et al. [73] modified the Hamiltonian to use
negative surface energies, constrained surface areas, and a
spin-flip energy threshold to improve the correspondence
to reality. The modified model correctly predicted several
dynamical behaviors of cells which the original CPM did
not, including the hierarchy of diffusion constants. Mom-
bach et al. [68] studied the influence of surface tension and

size on the rounding of chick embryonic cell aggregates and
CPM simulations. The results showed exponential relaxa-
tion in both cases, which studies using 2D Hydra cell
aggregates verified [76], [66], [88]. The relaxation time
decreased with higher surface tension as expected from
hydrodynamic laws [12], [11]. However, it increased faster
than linearly with aggregate size. The results provided
additional validation of the CPM in nonequilibrium situa-
tions. Merks and Glazier [61] surveyed the validity of
multiscale computational models in developmental biology.
The cell-centered approach that they favor uses phenom-
enological models of single-cell behaviors such as differ-
entiation in response to signals, cell-cell adhesion, cell-
extracellular matrix interactions, and chemotactic and
haptotactic responses to gradients, to build a biological
model for tissue and organ-level patterns and functions.
This approach is the essence of the CPM. Merks and Glazier
[61] also used the CPM as a paradigm for cell-centered
modeling of cell rearrangement driven by differential
adhesion [95] during morphogenesis, and argued for its
advantages over other cell-centered models in accounting
for cell shapes, distinguishing between cell adhesion and
attraction, and ease of integrating different software frame-
works into the model.

2 COMPUCELL3D

COMPUCELL3D takes a hybrid approach to modeling
morphogenesis [16], combining discrete cellular-automaton
and continuum methods. We implement the CPM as a
cellular automaton [4] governing cell interactions, along
with reaction-diffusion (RD) equation solvers to establish
surrounding chemical gradients. Domain growth is another
key factor; e.g., researchers have studied the effect of
uniform [53] and spatially nonuniform [22] growth on
biological development. Dillon and Othmer implemented a
domain-growth model of the shaping of the developing
vertebrate limb using a continuum approach [25]. COMPU-

CELL3D includes a 3D density-dependent growth algo-
rithm. Navier-Stokes, reaction-advection-diffusion (RAD)
equation solvers, have also reproduced two-dimensional
(2D) patterns and simulated growth. Coarse RAD models
are fast. However, solving the RAD equations in detail is
difficult because advection and moving boundaries can
cause numerical instabilities. We avoid solving RAD
equations by using a growth algorithm which depends
only on the local cell density in the Potts lattice, and
enforces domain growth when the density exceeds a
threshold. Dan et al. [23] have recently developed a fast
RAD solver that runs entirely within the CPM framework
and which doubles as a Navier-Stokes solver for low
Reynolds-Number flows.

COMPUCELL3D can simulate morphogenesis in both
multicellular and unicellular organisms such as Myxobac-
teria [5]. Myxobacteria simulations require the ability to
emulate the cell polarity of unicellular organisms by
modeling single cells as multiple lattice domains with
varying adhesivity. To study the role of polarity in cell
aggregation [3], [5], [51], we have implemented these
approaches within the CPM framework of COMPUCELL3D.
Our CPM simulations of Myxobacteria implement polarity

274 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 2, NO. 4, OCTOBER-DECEMBER 2005

within single cells, allow migration in a direction dependent
upon the cell’s orientation, and preserve a rod-shaped cell
using a cylindrical constraint. Our simulations successfully
reproduce the directional movement and shapes of experi-
mental rod-like bacteria. The cellular-automaton approach
Hösel and Liebscher proposed for modeling nutrient
supply to biofilms [43] employs a Gibbsian probability to
model cell interactions and uses an energy function with a
realization probability inversely proportional to the config-
uration energy, which would also translate easily into the
COMPUCELL3D framework.

In order to illustrate COMPUCELL3D, we have built a
3D model of skeletal patterning in the experimentally well-
studied avian limb. Because the skeletal pattern is first
established as cartilage before being replacedby bone,we call
this patterning chondrogenic (cartilage-forming). During
embryonic development, the vertebrate limb progressively
generates a sequence of increasing numbers of cartilage
elements proximo-distally. That is, the first elements to form
are those closest (proximal to) to the bodywall, and the last are
those farthest from (distal to) the body. In a forelimb, this
sequence begins with the humerus, followed by the radius
and ulna, then the carpals and metacarpals and, finally, the
digits. Although the bones at any given proximo-distal level
are more similar to each other than to those farther up or
down the limb, they also differ significantly in the antero-
posterior direction, that is, the direction defined by the thumb
to the little finger. Fig. 1 shows a developmental timeline of
patterning in the avian limb bud, viewed with the proximo-
distal axis running from left to right, and the antero-posterior
axis running from top to bottom. The dorso-ventral axis of the
limb, defined by the axis from the back of the hand to the
palm, points out of the page in this representation.

To construct our cell-based model in COMPUCELL3D, we
perform the following steps: First, we obtain cell-behavior
data from the scientific literature and experiments. In our
verificationsimulation,weassumeanirregularmesenchymal
cell morphology and obtainmitosis rates from [54], define an
activator signalwhichwe identifywithTGF-� [63], aputative
inhibitor [59], [64], [85], andanECMcomponentwhich thecell
secretes, which we identify with fibronectin [38], [50]. We

assume that the cell undergoes haptotaxis (i.e., directed,
contact-dependent movement) in response to fibronectin
concentration gradients. From chondrogenic experiments
[71], we define two types of cells into which precartilage
mesenchymal cells can differentiate: “condensing” (i.e.,
forming tight cell aggregates) and “noncondensing.” These
biological models translate into three computational models:
a set of RD equations, with initial and boundary conditions
coming from experimentally-observed cell densities and
concentrations; a CPMmodel incorporating all the single-cell
behaviors we identified above (this single-cell model is
merely descriptive, but becomes useful when the cell
interactions produce emergent patterns that resemble those
in the real chick limb bud) and a Cell-Type-Map that models
differentiation of cells.

Hentschel et al.’s [38] recent model of chondrogenesis
provides an experimentally-motivated “bare-bones” me-
chanism for the major features of limb skeletal patterning.
In particular, the model proposes a core network of cell,
biochemical, and genetic interactions known to be involved
in producing precartilage condensations in limb-cell cul-
tures and in developing limbs (see [38] and [50] for a
detailed description and experimental cell biology back-
ground). The core mechanism has RD form and governs the
spatiotemporal evolution of the condensation pattern [2].

A model of this sort must necessarily leave out many of
the scores of biochemical and genetic interactions that
contribute to generating a real limb. The biology of
precartilage condensation, however, dictates that we must
include cell adhesion and certain signals which experiments
show to be indispensable. Whether or not such a minimal
set of cell biological interactions can form limb-like skeletal
patterns without additional molecular apparatus is a
nontrivial question that only modeling and simulation can
address. Hentschel et al. [38] answered this question
affirmatively for a two-dimensional model limb which
represents cell density as a continuous variable. Kiskowski
et al. [50], representing cells as autonomous agents and
using a similar, but simplified, set of biological interactions,
showed that regular patterns of cell condensation qualita-
tively and quantitatively like those seen in limb-cell cultures
will arise for a narrow but robust set of parameter values.

The dynamics of limb growth define in a natural fashion
three experimentally-determined zones in the developing
limb: an apical zone in which a reserve of cells remains
unpatterned, an active zone in which cells rearrange and
condense, and a frozen zone in which condensing cells
differentiate into cartilage and cease rearranging (see
Section 6 and [38]). Our model explicitly encodes neither
the zonal organization of the developing limb nor the
spatiotemporal development of the skeleton. They are,
instead, emergent biological properties (resulting from the
symmetry assumptions of [38]) of both the 2D continuum,
bare-bones mechanism, and its more realistic embodiment
in a COMPUCELL3D simulation (see Section 6).

We establish an exterior chemical gradient by solving the
RD equations to obtain the concentration field of a diffusible
activator molecule, which we identify with the positive
autoregulatory growth factor TGF-� [63]. An inhibitor
molecule suppresses the production, or downstream effects,

CICKOVSKI ET AL.: A FRAMEWORK FOR THREE-DIMENSIONAL SIMULATION OF MORPHOGENESIS 275

Fig. 1. Developmental timeline of chick-limb skeletal patterning.

Drawings show transverse sections of wing buds. For all panels,

proximal is left, distal right, anterior up, and posterior down. From [71],

with modifications.

of the activator [59], [64], [85]. We assume that the cells
respond to the activator by producing a secreted molecule,
fibronectin, to which they adhere (see [38] and [50] for
additional details).

The RD equations are:

@ca
@t

¼ �½ðJ0 þ JaðcaÞ�ðcaÞÞR0 � kacaci� þ baðca � casÞ3

þ dax
@2ca
@x2

þ day
@2ca
@y2

þ daz
@2ca
@z2

� �
;

@ci
@t

¼ �½JiðcaÞ�ðcaÞR0 � kicaci� þ biðci � cisÞ3

þD dix
@2ci
@x2

þ diy
@2ci
@y2

þ diz
@2ci
@z2

� �
;

ð1Þ

where ca and ci represent the respective concentrations of
activator and inhibitor, cas and cis are the spatially-
homogeneous steady states for the activator and inhibitor
concentrations, and R0 denotes the average cell density.

This system represents a modified form of the equations
of Hentschel et al. [38] which we implemented in
COMPUCELL3D. We kept only the two dominant equations
and added two terms baðca � casÞ3 and biðci � cisÞ3 to enforce
stability [29], [1]. As noted above, these equations represent
known biological interactions in the chick limb. We used
them to generate the chemical field in our verification
simulations. The emergence of the sequence of bone
structures resulted from changes in the domain geometry
as well as in the reaction kinetics.

We first describe the CPM in detail, along with ways in
which it can model biological mechanisms such as cell
adhesion, cell growth and division, reaction-diffusion,
chemotaxis and haptotaxis, and cell type and state. We
then describe how COMPUCELL3D addresses the inherent
issues present in computational modeling of morphogen-
esis. Next, we describe various software techniques which
we used in the design of COMPUCELL3D. These include
polymorphism to make the framework extensible and user-
friendly, as well as various computational techniques such
as offset-neighbor evaluation which uses a lazy calculation of
neighbor pixels in a grid for a four-fold increase in
computational speed and a 10-fold reduction in memory
consumption compared to standard alternatives. Finally,
we present our 3D avian limb-bud simulation, which
includes cell division. We provide sample input files for
this simulation, along with instructions for running
COMPUCELL3D, on the COMPUCELL Web site [21].

COMPUCELL3D can also work in tandem with other
existing software frameworks treating subcellular and super-
cellular phenomena. For example, BioSPICE [13], [7] models
dynamic, cellular network functions. BioSPICE can clarify
complex intracellular biochemical networks [52] to simulate
cell division, circadian rhythms, bacterial sporulation, and
gene transcription [24]. BioSPICE simulations of known
regulation and signaling networks can either control
COMPUCELL3D cell parameters directly or generate simpli-
fied ODEs and state-change-map models of cell behaviors
which the user can implement in the Cell-Type-Mapmodule
of COMPUCELL3D. CellO [15] is an object-oriented tool that
can model apoptosis, induction, differentiation, and the cell
cycle. In contrast to the CPM, CellO uses a grid-independent

method tomodel cellmotion, using attractive forces tomodel
cell adhesion and repellent forces to model cell elasticity. We
can cross-validate the results of COMPUCELL3D by imple-
menting identical models using CellO’s grid-independent
methods. NEURON [69], [39] provides a simulation environ-
ment for neuron modeling, specifically supporting complex
cellmembraneproperties.NEURONcan treat large groupsof
cells and connections and possesses a GUIwith a CellBuilder
that can create new models or modify existing models, a
potentially useful tool to interface with COMPUCELL3D.
E-Cell [27], [83] is an object-oriented software suite for
analysis of large-scale biological interactions, including
biological cells. Researchers are currently developing
E-Cell 3 as a platform for integration of multiple algorithms
such as reaction-diffusion, cellular automata, and Gillespie’s
algorithm [31] for stochastic simulation of coupled chemical
reactions. E-Cell 3 will be another useful tool for cross-
validation of COMPUCELL3D. Finally, Virtual Cell [89], [78]
can model cellular physiology by allowing a user to define
both biological models which include chemical species and
reactions, subcellular structures, and cell geometry, and
mathematicalmodels via a general-purpose solver for steady
and unsteady solutions of algebraic equations, including
partial differential equations (PDEs) and ordinary differen-
tial equations (ODEs). Virtual-Cell models can set up the
initial state for a COMPUCELL3D simulation including cell
positions and structure, andwe can useVirtual-Cell equation
solvers to generate external chemical gradients.

3 A MODEL FOR MORPHOGENESIS

The CPM uses a lattice to describe cells, and associates an
integer index with each lattice site (voxel) to identify the
spatial extent and location of each cell at any instant. The
index value at a lattice site is � if the site lies in cell �.
Domains in the lattice (the collection of lattice sites with the
same index) represent cells. A cell is thus a set of discrete
components that can rearrange to produce cell shape
changes and motion. The CPM follows the principle of
energy minimization, with the configuration of cells
gradually rearranging to reduce the generalized pattern
energy.

Fig. 2 shows three 2D cells and their extracellular matrix
(ECM), which require four distinct indices. It also demon-
strates the scheme for determining pixel neighbors and
their levels, a key part of the CPM.

3.1 Principle of Energy Minimization

In the CPM an effective energy, E, determines cell
interactions, motion under cytoskeletal fluctuations, re-
sponse to external chemical stimuli, differentiation, and
division. The effective energy contains true energies (e.g.,
cell-cell adhesion) and terms that mimic energies (e.g., the
response of a cell to a chemotactic gradient). A pattern
evolves under strong damping to reduce its energy. Such an
approach is valid, because, in the high-damping limit,
motion is Aristotelian rather than Newtonian, i.e.:

~vv ¼ �~FF ¼ � ~rrE: ð2Þ

276 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 2, NO. 4, OCTOBER-DECEMBER 2005

In this case, we can describe any biological mechanism

where the response of a cell is a velocity proportional to the

gradient of a scalar quantity simply by introducing that

scalar quantity as an effective energy. For example, in

chemotaxis, the simplest assumption is that the velocity of a

cell is proportional to the gradient of the chemical

concentration, Echemical ¼ � ~rrC. In this case, the chemical

concentration times an effective chemical potential (equal to

the mobility �) has the form of a potential energy and we

can include the chemotaxis term as an effective energy. Of

course, if we wanted to account for saturation of cell

receptors for large chemical concentrations and for limita-

tions in cell velocity, we could use a Michaelis-Menten or

Hill form for our chemical potential [62], [77]:

E0 ¼ E �
X
i

�
cð ~x; tx; tÞ

s cð ~x; tx; tÞ þ 1
ð1� ��i;�jÞ: ð3Þ

Upadhyaya [87] and Marée [56] have justified these

aspects of the CPM quantitatively, reproducing the beha-

vior of different kinds of cell aggregates. The dynamics

favor connected domains of lattice sites with the same

index.
In mixtures of liquid droplets, thermal fluctuations of the

droplet surfaces cause diffusion, or Brownian motion,

leading to gradual pattern rearrangement as the cells

diffuse in their environment. The effective energy biases

the movement, applying small forces which result in

eventual energy minimization. The simplest phenomenolo-

gical assumption is that an effective temperature, T, drives

cell-membrane fluctuations. T defines the size of the typical

fluctuation. We implement fluctuations using the Metropo-

lis algorithm for Monte-Carlo Boltzmann dynamics. Bey-

sens et al. [12], [11] have conducted experiments that justify

this simplification. If a proposed change in lattice config-

uration (a change in the indices associated with the voxels

of the lattice) produces a change in effective energy �E, we

use the acceptance function:

P ð�EÞ ¼ 1; if �E � 0;
e��E=kT ; if �E > 0;

�
ð4Þ

where k is a constant convertingT intounits of energy.We can
also account explicitly for energy dissipation in making and
breaking contacts by employing an extra dissipation. For
more detailed information on acceptance function, see [92].

Three possible objections to the CPM approach are that it
does not describe the cytoskeleton and that it does not
handle force transduction or dissipation in a transparent
manner. These objections do indeed point to omissions in
the simplest versions of the CPM, which is why we have
made an extra effort to validate CPM results quantitatively
against relevant experiments.

In answer to the first objection, we note that in these
simulations we are separating the emergent behaviors of
aggregates of cells, which we study, from the internal
mechanisms which give rise to those behaviors. We believe
that this approach optimizes trade offs between model
complexity, execution time, and the amount of available
biological knowledge. For our present purposes, the
cytoskeleton appears indirectly through several cell beha-
viors: Cells diffuse randomly in their environment, which
models the effects of membrane ruffling; they undergo
chemotaxis and haptotaxis, which models the formation of
leading edges; they undergo mitosis; and they can develop
variable shapes and distributions of cell adhesion molecules
on their surfaces. The mesenchymal cells we simulate in our
limb-bud example are essentially baglike and nonpolar. It is
straightforward to introduce more biological detail as it
becomes available. What is striking is that, even with
radical simplifications of cell behaviors, simulated cell
aggregates still reproduce, quantitatively, many complex
observed phenomena, like the entire life cycle of Dictyoste-

lium. The principle of Occam’s razor reminds us to build
and understand minimal models before introducing addi-
tional complexity. We should avoid introducing mechan-
isms that bring with them large numbers of parameters
(whose values are usually undetermined experimentally),
but which are not qualitatively necessary to the behaviors
we are studying. Complexity theory tells us that the
behaviors of large aggregates depend on the general
features of the agent interactions and are relatively
insensitive to the details of those interactions. As cytoske-
letal simulations develop, we could easily interface a
cytoskeletal model like that of Mogilner to the CPM [65].

In answer to the second objection, we note that in none of
the cases we treat here is long-range force transduction
significant. In the quasifluid environment of soft tissues, we
have established that the flows the CPM predicts are
realistic [46], [47], [9], [45]. For the purposes of develop-
mental modeling, because movements are so slow and
deformations so small, in most cases the exertion of force
against the fixed underlying lattice is an adequate proxy for
force exertion against the ECM. We are currently develop-
ing a methodology for simulating rigid-body motion within
the CPM framework. COMPUCELL3D supplies hooks so
that the user can interface it to any standard finite-element
package if highly-accurate rigid-body or force-transduction
simulations are desired.

CICKOVSKI ET AL.: A FRAMEWORK FOR THREE-DIMENSIONAL SIMULATION OF MORPHOGENESIS 277

Fig. 2. The CPM grid showing cells and ECM. The shading denotes the

cell type. Different cells (for example, cells 1 and 3) may have the same

type. A site S connects up to fourth-neighbor pixels ðN1; . . . ; N4Þ.

The issue of dissipation we can address partially by

using the modified acceptance function we have described

above. In the highly viscous regime we work in, the major

effect of changing dissipation rates is to change the

relationship of a Monte Carlo Step (see below) to time. In

addition, while groups using magnetic and optical tweezers

have made some measurements of cytoplasmic and cellular

dissipation, we almost never know the actual dissipation

rates significant in vivo. As we noted above, one of our

guiding principles is to introduce as few parameters with

unknown values as possible. The RAD solver that we have

developed and will soon release in an update to COMPU-

CELL3D includes viscous dissipation explicitly.
E includes terms to describe each biological mechanism

that we will employ in a model, e.g.:

E ¼ EContact þ EV olume þ EChemical: ð5Þ

We describe each of these terms below:

1. Cell-Cell Adhesion: Cells have numerous classes of
adhesion molecules on their membranes which are
responsible for both specific and nonspecific binding
to other cells and to the ECM. The great variability of
these molecules means that cells can control in detail
their binding energy to each class of partner which
they are likely to encounter and whether this
binding is reversible or irreversible. The binding
molecules also generally act as receptors, i.e.,
binding of a molecule to its ligand can induce a
signaling cascade within the cell that can cause the
cell to modify its behavior.

In (5), EContact describes the net adhesion/repul-

sion between two cell membranes. It is the product

of the binding energy per unit area, J�;� 0 , and the total

area. J�;� 0 depends on the types of the interacting

cells, � and � 0. The equation for EContact is:

EContact ¼
X

ði;j;kÞ;ði0;j0;k0Þneighbors
J�ð�Þ;� 0ð�0Þ

ð1� �ð�ði; j; kÞ; �0ði0; j0; k0ÞÞÞ;
ð6Þ

where the Kronecker delta �ð�; �0Þ ¼ 0 if � 6¼ �0 and

�ð�; �0Þ ¼ 1 if � ¼ �0, ensuring that only links

between surface sites in different cells contribute to

the cell-adhesion energy.
2. Cell Growth, Division, and Death: A cell of type �

has a prescribed target volume vð�; �Þ and target
surface area sð�; �Þ. Translating actual volumes to
CPM target volumes involves fixing the ratio
between the CPM lattice size in pixels and the actual
domain length. The actual volume and surface area
fluctuate around these target values, e.g., due to
changes in osmotic pressure, pseudopodal motion of
cells, etc. Changes also result from growth and
division of cells during morphogenesis. EV olume

enforces these targets by exacting an energy penalty
for deviations from the targets. EV olume depends on
four model parameters: volume elasticity, �, target
volume, vtargetð�; �Þ, membrane elasticity, �0, and target
surface area, stargetð�; �Þ:

EVolume ¼
X
cells

��ðvð�; �Þ � vtargetð�; �ÞÞ2

þ
X
cells

�0
�ðsð�; �Þ � stargetð�; �ÞÞ2:

ð7Þ

We model cell growth by allowing the values of

vtargetð�; �Þ and stargetð�; �Þ to increase with time. Cell

division occurs when the cell reaches a fixed, type-

dependent volume. We model division by starting

withacell of average size,vtarget ¼ vtargetaverage, causing

it to growbygradually increasing vtarget to2vtargetaverage
and splitting the dividing cell into two cells, eachwith

a new target volume vtarget=2. The axis of divisionmay

either be random or oriented perpendicular to the

long axis of the cell; in our applications of the model

we use the former. One daughter cell assumes a new

identity (a unique value of �). We model cell death

simply by setting the cell’s target volume and target

surface area to zero.
3. Chemotaxis and Haptotaxis: Cells can respond to

chemical signals by moving along diffusible or
substrate-bound concentration gradients of a signal
molecule. The first mechanism is chemotaxis, the
second is haptotaxis. A chemotaxis model requires a
representation of the evolving and spatially-varying
chemical-concentration field and a model mechan-
ism linking the field to the framework for cell and
tissue dynamics. The former depends on the
particular morphogen molecule. Cðx; y; zÞ is the local
concentration of the morphogen molecule in extra-
cellular space. An effective chemical potential �ð�Þ
models chemotaxis or haptotaxis to incorporate the
effective chemical energy into the CPM energy
formalism:

EChemical ¼
X
x;y;z

�ð�ðx; y; zÞÞCðx; y; zÞ; ð8Þ

for a linear response. Higher-order responses are

also possible as we showed above (see (3)) [62].
Haptotaxis resembles chemotaxis in (8), but

Cðx; y; zÞ does not diffuse. Our current chemotaxis

and haptotaxis implementation makes two strong

simplifications: that the chemical fields interpene-

trate the cells and are tied to the underlying CPM

lattice. The RAD-solver release of COMPUCELL3D

will allow for excluded volumes and advection due

to cell and ECM movement. However, the extensive

and successful simulations of the Utrecht group [55],

[56], [77], [61], [62], [42], [41], [40], [57], [58] show

that neither of these simplifications fundamentally

affects behavior when movement is slow compared

to diffusion rate (as it is in most developmental

biology simulations).

3.2 Reaction-Diffusion

Turing [85] introduced the idea that interactions of reacting

and diffusing chemicals (usually of two species denoted u1

and u2) could form self-organizing instabilities that provide

the basis for biological patterning. We use his continuum,

PDE RD approach. For simplicity, we assume isotropic

278 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 2, NO. 4, OCTOBER-DECEMBER 2005

diffusion (i.e., dij, the components of the diffusion terms, do
not depend on i or j), so:

@~uu

@t
¼ Dr2~uuþ F ð~uuÞ; ð9Þ

where ~uu ¼ ðu1; u2ÞT and D ¼ diagðd1; d2Þ, where d1 and d2
are the diffusion constants for u1 and u2, respectively.
Without loss of generality, we can assume that d1 ¼ 1, and
d2 ¼ d. The term F ð~uuÞ describes the reaction kinetics.

3.3 Cell Type and State

During morphogenesis, cells differentiate from initial multi-
potent stem cells into the specialized types of the developed
organism. Though every cell is different, identifying cells
with broadly similar behaviors and grouping them into
differentiation types is standard practice in biology. Cell
differentiation from one cell type to another is a compre-
hensive, qualitative change in cell behavior, generally
abrupt and irreversible (e.g., responding to new sets of
signals or turning on or off whole genetic pathways). All
cells of a particular differentiation type share a set of
parameters describing their state, while two different cell
types (e.g., muscle and bone) have different parameter sets.
Cells of the same type can also exist in different states,
corresponding to a specific set of values for the parameter
set of the cell type. A cell’s behavior depends on its state; if
all parameters associated with their cell type were exactly
the same, two model cells would behave identically in the
same external environment, while cells of the same type
with different parameter values would behave differently.

In developmental processes like the ones we consider,
networks of autoregulatory transcription factors common to
all cells of a particular type form multistable, multistate,
dynamical systems based on their ability to switch arrays of
cell-type-specific genes on and off [49].

Here, we model differentiation using a type-change map,
representing a state automaton. Each type in this map
corresponds to a cell type (with a defined parameter set)
that exists during a particular stage of morphogenesis (see
Section 5). Change of a cell from one type to another
corresponds to cell differentiation. The type-change map
models regulatory networks by defining the rules govern-
ing type changes, which take into account the intracellular
and intercellular effects of chemical fields (see [28], [74] for
formal issues involved in creating cell-type-transition maps
from continuum and discrete approximations of complex
gene regulatory networks). Other approaches to modeling
gene regulatory networks are possible [48].

4 MOTIVATION BEHIND COMPUCELL3D

We originally developed a 2D engine for morphogenesis
called COMPUCELL [44]. This work extends COMPUCELL

to 3D, increasing the range and biological realism of
COMPUCELL3D simulations. We have improved the
engine’s efficiency through better data structures and
algorithms, and its extensibility through a more thor-
oughly object-oriented design, which uses scientific design
patterns [79], [14].

Specifically, COMPUCELL consumed too much memory
when running 3D simulations. For example, we could not

extend the technique of representing grid space as a
2D array to 3D because of the quantity of memory such
an array consumed. Consider a relatively small 2003 grid,
with each pixel consuming a very conservative 32 bits. In
three dimensions, this grid requires approximately 30 MB
of memory, compared to only 156 KB for a 2002 grid. To
reduce memory usage, COMPUCELL3D implements con-
servative grid allocation, which only allocates space to a
grid pixel if the pixel belongs to a cell and otherwise points
to a singleton representing the surrounding medium. This
technique eliminates memory allocation for potentially
hundreds of thousands of pixels and is one of multiple
techniques we use for careful memory management.

Paging causes a second memory issue. The Metropolis
algorithm attempts pixel-index flips hundreds of thousands
to billions of times per simulation step, requiring new pixel
information that many times per step. If the information (for
example, attributes) associated with each pixel is heavily
scattered in virtual memory, the page-fault rate could
skyrocket, with multiple sets of pixels and attributes
constantly swapping in and out, greatly degrading perfor-
mance due to thrashing. We addressed this problem via two
techniques: offset neighbor evaluation and contiguous attribute
allocation. The former specifically improves the performance
of energy Hamiltonians that need to calculate pixel
neighbors (for example, EContact in the CPM) and of
neighbor selection. Offset evaluation finds neighbors for a
pixel only when necessary, and caches neighbor pixels in an
array for later use by the same or different pixels in the grid.
Contiguous attribute allocation takes a grid point, and if it
forms part of a cell, stores a pointer to a location in memory
which contiguously stores the parameter set representing
the state of that cell. This technique reduces the page-fault
rate by storing related information within a single page,
reducing the number of pages swapped in when we
reference a cell in the grid.

Certain programming languages (e.g., Fortran [86]) have
built-in features for contiguous allocation that could benefit
COMPUCELL3D. However, Fortran lacks flexibility. An
object-oriented language provides a solid basis for a flexible
framework through polymorphism (allowing objects that
share common logic to inherit methods and data members
from a predefined interface), so we implemented the back
end of COMPUCELL3D in C++ with careful memory
management and other techniques to improve flexibility.

Building on polymorphism to achieve flexibility, we can
add new functionality to COMPUCELL3D using six different
simulation objects, each with its own predefined interface:

1. Energy function: Computes energies used by the
CPM. An example is EContact (6), implemented as a
ContactEnergy energy function in the COMPU-

CELL3D source.
2. Acceptance function: Computes the probability of

accepting a CPM pixel flip. An example is the
Metropolis acceptance function of (4).

3. Steppable: Provides functionality to execute a
routine after every n simulation Monte Carlo steps
(MCS) (a Monte Carlo step attempts N pixel flips,
whereN is the number of lattice points). An example
would be a dumper that outputs grid data for

CICKOVSKI ET AL.: A FRAMEWORK FOR THREE-DIMENSIONAL SIMULATION OF MORPHOGENESIS 279

visualization, perhaps, representing chemical con-
centrations or current cell types.

4. Cell-Change Watcher: Provides functionality to
execute a routine after every successful pixel flip.
A volume calculator is an example, since a pixel flip
changes the volume of two cells.

5. Stepper: Provides functionality to execute a routine
after every pixel-flip attempt. A sample application
is a deallocator of memory for dead cells (those with
zero volume). We perform the zero-volume check in
a cell-change watcher and set a flag. We then check
the flag in a stepper and deallocate if necessary. This
sequence avoids null references if the flip has
additional watchers to execute.

6. Plugin: Encapsulates the functionality of a combina-
tion of the previous objects. An example of this
situation is the implementation of cell mitosis. A cell
divides if its volume exceeds the global doubling
volume. Therefore, a successful pixel flip (cell-
change watcher) requires checking the volume of
the cell with the added pixel and setting a Boolean
flag if the cell’s volume is higher than the doubling
volume. The stepper checks the flag before the next
pixel-flip attempt and invokes the cell mitosis code if
the flag is set. This sample plugin would inherit
from two interfaces: the cell-change watcher and the
stepper, as a result possessing both their abilities.

Fig. 3 describes the execution order of these simulation

objects, which work in conjunction with a COMPUCELL3D

XML input configuration file that provides input elements,

normally by the addition of a few lines of code. Plugins and

steppables implement functions to read from the XML

configuration file and so can accept input variables and

values from it. The benefit of a configuration file extensible

by a single method comes with the inherent cross-platform

compatibility of XML, increasing flexibility by permitting

the use of COMPUCELL3D on machines running different
operating systems.

While this structure for adding new simulation objects
coded in C++ and interfacing them to the framework
through the configuration file lays a solid groundwork for
simple extensibility, we realize that many biocomplexity
researchers and potential users of COMPUCELL3D may not
be experienced C++ programmers. For this reason, we have
interfaced COMPUCELL3D with BIOLOGO [19], an XML-
based domain-specific language for morphogenesis. We
designed the syntax of this language to be easy to
understand by researchers studying morphogenesis who
wish to use the CPM. BIOLOGO allows users to extend
COMPUCELL3D with customizable energy functions, che-
mical fields, and Cell-Type-Maps. BIOLOGO automatically
generates plugins implemented as C++ code.

5 IMPLEMENTATION OF TECHNIQUES AND

BIOLOGICAL CONCEPTS IN COMPUCELL3D

This section explains how we translate the various
biological phenomena that compose our simulations into a
COMPUCELL3D software implementation. We also include
a more detailed description of the software techniques that
we outlined in the previous section.

5.1 Biological Cell

A cell factory creates COMPUCELL3D biological cells.
Factories are useful techniques in highly polymorphic,
object-oriented design due to their runtime decisions on
derived-class object creation and deletion [6]. We use the
BasicUtils library, which contains an implementation of a
BaseDynamicClassFactorywith virtual functions for
allocation and deallocation analogous to new and delete

functions in C++ [20]. This organization improves software
flexibility, since we can now allocate and deallocate an

280 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 2, NO. 4, OCTOBER-DECEMBER 2005

Fig. 3. Pseudocode for the execution of simulation objects. Diagram by Chris Mueller, Indiana University, Bloomington.

object of a derived class without specifying the actual

derived class to which it belongs.
A pointer to a set of contiguous memory locations that

encompasses all elements of a cell’s parameter set repre-

sents the basic Cell unit. Parameters include center-of-

mass coordinates, volume, surface area, etc. A dynamic class

node (DCN) represents each parameter. A DCN improves

flexibility by allowing users to define customized init()

methods that execute parameter-value initialization for each

individual DCN, and aids memory management by allow-

ing access to a given DCN via a specific pointer and offset.
The user can add parameters to each cell by registering

new DCNs. A registered DCN stores its size (in bytes) and

offset from each Cell pointer. We define the offset as the

size (in bytes) of the total number of DCNs registered thus

far. Fig. 4 shows a schematic of the contiguous memory

allocation for a cell, assuming one-word blocks.
COMPUCELL3D performs this allocation for each Cell

in the simulation. We can access Cell parameters

represented as DCNs by supplying the Cell pointer and

the name of the DCN, since the DCN stores the offset from

the Cell pointer.
In this scheme, if the amount of memory a Cell’s

attributes consume is small enough to fit into one virtual

page, the fragmentation within each Cell object is zero.

The method also reduces global external fragmentation.

Consider a simulation with a large number of Cells, each

with large parameter sets. If the memory allocation for each

individual parameter set for each Cell is not contiguous,

thousands of parameters of varying sizes will be scattered

in memory, creating many small holes and potentially

requiring frequent compaction. On the other hand, using

DCNs for parameters enforces contiguous parameter set

allocation for each Cell, as long as all attributes can fit into

one page. Thus, data sets for Cells lie scattered in memory,

rather than individual parameters for each Cell, a much

better granularity. Contiguous allocation also allows us to

take advantage of spatial locality which can drastically

reduce page faults.

5.2 Cell Grid and Watchers

We implement the 3D cell grid as a resizable array of Cell

object pointers called a field, defined by the class Field3D.

We used conservative grid allocation. After CPM pixel flips,

pointers to the medium singleton may change to point to
Cell objects, and vice versa.

Because some operations must execute after every
change in the Cell field, we must keep track of, or watch,
the Cell field. Therefore, we declare the Cell field not just
as a Field3D object, but as a WatchableField3D

object—the only difference being that a Watchable-

Field3D object keeps an array listing its “watchers.” We
represent watchers as CellChangeWatcher objects. Each
watcher defines a method field3DChange()which de-
fines the appropriate actions to take after a change in the
Cell field. After a Cell-field update, we pass through the
array of watchers and invoke their field3DChange()

methods. Watcher examples include cell-volume, surface-
area, or center-of-mass calculators.

A simulation can containmanyCell objects. Consider the
impact of conservative grid allocation on the previous
example with 32 byte Cells. In this case, allocating memory
only as needed in the Cell grid and having each medium
grid point reference a singleton, saves 536,722 Cell-object
allocations. The total memory all Cells consume in the
simulation is roughly 81 KB versus up to 16 MB for naive
allocation, a savingsof about 95percent. The savingsbecomes
even larger for larger grids.

5.3 Energy Computation and Arbitrary Neighbors

TheCPM implements a physical description of cells based on
theprincipleofenergyminimization.ACPMsimulationmust
account for many different energies (e.g., contact, volume/
surface, chemical). Energy functions within COMPUCELL3D
inherit from an abstract class EnergyFunction, which
contains a virtual function changeEnergy(), which the
userdefines foreachenergyfunction.Asinglecall toamethod
registerEnergyFunction()registers an EnergyFunc-

tion, passing the EnergyFunction object as a parameter.
Invocationof thismethod tellsCOMPUCELL3Dto include this
energy calculation when deciding whether or not to flip the
index of a selected pixel.

Some energy functions (e.g., contact energy) require a

grid pixel to compute its interaction with neighboring

pixels. To find pixels neighboring a grid point, we

implement a NeighborFinder singleton which uses offset

evaluation. Algorithm 1 gives pseudocode for the offset

neighbor evaluation. The algorithm for offset evaluation

assumes that a pixel’s neighbors lie within some small

constant distance D. Knowing this distance, we first find

neighbors to the origin, by finding points ðX;Y ; ZÞ such thatffi
X2 þ Y 2 þ Z2

p
� D. We find other neighbors at this

distance by rotating point ðX;Y ; ZÞ about the origin. Then,

for a specific point ðx; y; zÞ we translate these neighbors by

adding ðx; y; zÞ to their coordinates, giving us the neighbors

of ðx; y; zÞ.

Algorithm 1 Pseudocode for offset neighor evaluation
Neighbor Finder:

1) Preprocessing: Initialize x :¼ 0 and neighbor_array

to be empty.

neighbor_array is an array of pairs of points and

integer distances, and n :¼ 0;

2) getNeighbor(int n, double &D)

CICKOVSKI ET AL.: A FRAMEWORK FOR THREE-DIMENSIONAL SIMULATION OF MORPHOGENESIS 281

Fig. 4. Representation in memory of a Cell object with three attributes

represented as dynamic class nodes of size 12, 8, and 12 bytes. Each

cell takes 32 bytes of contiguously allocated memory. This figure

assumes one-word blocks.

a) while length of neighbor_array < n

i) x :¼ xþ 1;

ii) for each ðX;Y ; ZÞ such that x¼X2þY 2þZ2

A) for each unique point Q that is a

rotation of ðX;Y ; ZÞ around the axes

Add (Q;
ffiffiffi
x

p
) to neighbor_array;

b) D := neighbor_array[n].distance;

c) return neighbor_array[n].point;

3) To look at level 1 neighbors, distance 1 from a
point P :

a) do

i) neighbor = getNeighbor(n, D) + P ;

ii) . . . Do something with neighbor . . .

iii) n :¼ nþ 1 ;

while D <¼ 1

Finding the first n neighbors of a given point ðx; y; zÞ
requires D2 integer iterations, where D is the distance
within which all n neighbors lie. For each j � D, we test all
possible integer values of X;Y ; Z between 0 and j. If
X2 þ Y 2 þ Z2 ¼ j2, we add the neighbors at distance j to a
neighbor array, until we reach n neighbors. In this way, we
insert the neighbors into the neighbor array in order of
distance. Because we calculate neighbors with respect to the
origin, we can reuse them to find the neighbors of multiple
grid pixels. Since executing this entire algorithm to calculate
each neighbor is prohibitively slow, we cache the neighbors
into an array for later use. With offset evaluation and
dynamic array growth, we calculate neighbors with value n

only as needed.
This lazy evaluation technique for calculating arbitrary

neighbors of a pixel greatly improves simulation speed. To
illustrate this improvement, compare a 3D CPM algorithm
with offset evaluation (program B) to a different version
(program A) that forces each grid pixel to maintain pointers
to all first, second, third, and fourth neighbors. We ran the
two versions on a PC with an AMD Athlon XP 1800+ at
1.6 GHZ, and 512 MB of memory running RedHat Linux
9.0, kernel 2.4.22. The field dimensions were 71� 36� 211

pixels with a cell size of 2� 2� 2, an initially uniform cell
distribution, temperature of 1.0, data output every 10 steps,
and 539,316 flip attempts per simulation step. We used
contact, volume, and chemical energies for energy compu-
tation in the CPM algorithm, and turned off visualization to
restrict performance measurement to computation. We
measured times using “real” or wall-clock times using the
Linux time command.

VersionAhas amuch longer startup time than programB.
Subtracting this initial startup time (time for the first
timestep), the timing and memory usage are:

Therefore, even without the expensive initialization costs
in version A, the offset neighbor evaluator yields a four-fold
speedup in computation. The offset evaluator for neighbors

also yields a 10-fold memory savings, since a pixel in
memory does not need pointers to all neighbors.

The current implementation of COMPUCELL3D includes
just one acceptance function, which implements the Metro-
polis algorithm with a Boltzmann acceptance function, but
we can create custom acceptance functions, for example, to
implement Kawasaki or Glauber dynamics [8], [92].

5.4 Cell-Type-Map

COMPUCELL3D includes a cellular automaton to imple-
ment a Cell-Type-Map. Each individual type of cell has
three methods defined:

1. A method for initializing state variables,
2. a method for updating states (changing state-vari-

able values), and
3. a method for changing type.

Cells of different types may react differently to external
and internal conditions. Therefore, the definitions of each of
these methods will vary with cell type. COMPUCELL3D
changes cell types after each CPM step, so we implement
the automaton as a TypePlugin. When the CPM selects a
pixel candidate, it finds the corresponding cell and invokes
the appropriate methods for updating its state and type. If
the cell’s type changes, we reinitialize the state variables
appropriately for the new type.

5.5 External Chemical Concentration

COMPUCELL3D implements both resizable field structures
and platform-independent file reading of external chemical
concentrations. Various simulation objects such as plugins,
steppables, or steppers can update these fields.

5.6 Boundary Conditions

COMPUCELL3D implements NoFlux and Periodic boundary
conditions on each individual axis. Calculating neighboring
pixels using NoFlux boundary conditions involves discard-
ing pixels outside the lattice. If a neighbor pixel lies outside
the lattice using Periodic boundary conditions, modular
arithmetic implements wraparound.

5.7 Flexibility

We can extend COMPUCELL3D by encapsulating new
functionality (e.g., new energy functions, new cell-change
watchers, or new rules for cell differentiation and state) into
one of the six simulation objects: plugins, steppables,
steppers, acceptance functions, energy functions, and cell-
change watchers. COMPUCELL3D accepts a configuration
file as input. This configuration file can add or remove
plugins and steppables, as well as 3D graphical-field
renderer objects, from simulations. The COMPUCELL Web
page [21] provides complete COMPUCELL3D configuration-
file syntax along with configuration files for this paper’s
verification simulation and two others: basic cell sorting
[80], [81], [11], [32] and an avian limb without domain
growth [71], [44], [16].

COMPUCELL3D can also read a Potts Initial File (PIF) for
initial cell positions. The format of the PIF is straightfor-
ward, with repeated lines of the form:

< cell# > < celltype > x1 x2 y1 y2 z1 z2;

282 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 2, NO. 4, OCTOBER-DECEMBER 2005

resulting in a rectangular cell extending from (x1, y1, z1) to
(x2, y2, z2). Reuse of the same cell # allows arbitrary cell
shapes.

6 VERIFICATION SIMULATION

Chaturvedi et al. [18] and Izaguirre et al. [44] used the
systems-biology approach of integrating discrete and
continuum models for biological mechanisms to describe
a reduced, 2D model of vertebrate limb development. Fig. 5
schematically represents the major axes and the progress of
chondrogenesis in a developing vertebrate forelimb at a
stage part-way through development. The humerus (in
dark gray) has already differentiated into cartilage, the
radius and ulna (light gray) are beginning to form, and the
wrist bones and digits are still to form.

Here, we use discrete models to describe cell movement,
division, interactions, and differentiation from multipotent
cells into specific cell types. We use the modified form of
the equations of Alber et al., described in (1), extending this
originally 2D RD model to 3D [38]. The concentration of the
activator chemical, in response to which in our model
(although not in the model of Hentschel et al.) cells undergo
chemotaxis and increase their adhesivity levels, occupies a
second matching grid. We measure activator concentration
for a cell grid pixel using its corresponding location in the
concentration grid. High activator concentration induces

production of a second secreted molecule, which we

identify with fibronectin. As soon as the TGF-� concentra-

tion at a grid pixel exceeds a threshold, the corresponding

cell secretes fibronectin at that pixel location, at a user-

specified rate. Fibronectin concentration, in turn, supplies

the effective chemical energy for haptotaxis in (8).
We superimpose a third chemical, FGF, on the grid to

control growth and RD. FGF concentration monotonically

increaseswith zacross theentiregrid,withnormalizedvalues

between0.1 and1.Adomainknownas theApicalZone,within
which no RD can occur, moves proximo-distally within the

grid. Fig. 6a shows a sketch of a 2D example of one step of the

growth algorithm starting from a uniform cell distribution.
Three-dimensional simulations add biological realism. In

2D, for example, the Apical Zone is crucial to the simulation

and allows cells to move perpendicularly to the proximo-

distal direction. In 2D without the Apical Zone, the

noncondensing zone becomes disconnected, and one part

of the limb always grows faster than the rest, see Fig. 7. In

our 3D simulation, the noncondensing zone remains

connected, with or without the Apical Zone.
Initially, we distribute cells uniformly in a user-specified

fraction of the overall grid (with respect to z) and the Apical

Zone occupies this grid fraction. When the grid grows by

n rows in the positive z direction, the Apical Zone shifts

upward in the positive zdirection by n rows, allowing cells in

theActive Zone below it to react and formpatterns.We specify

a variable FGFThreshold which sets the size of the Apical

Zone. The z value in the grid where the FGF concentration

equals this threshold defines the proximal boundary of the

ApicalZone, and the zvalueatwhich theFGFconcentration is

maximal defines the Apical Ectodermal Ridge (AER), the distal

boundary of the Apical Zone.When a cell attempts to react to

the surrounding activator we check the FGF concentration at

its location in the grid. The cell cannot react if the

concentration is greater than or equal to FGFThreshold

(implying that it is in the Apical Zone). The grid thus divides

into twozones, theApicalZone and theActiveZone. TheFGF

concentration changes linearly within each zone (see Fig. 6b):

CICKOVSKI ET AL.: A FRAMEWORK FOR THREE-DIMENSIONAL SIMULATION OF MORPHOGENESIS 283

Fig. 5. Schematic diagram of chick limb organogenesis.

Fig. 6. (a) One step of the growth algorithm applied to the chick-limb simulation. Cells are initially uniformly distributed and occupy a third of the grid,

as does the Apical Zone. After one growth step, the Apical Zone shifts up by n rows in the z direction, allowing cells in the newly formed Active Zone

to condense into patterns. (b) The distribution of FGF with respect to the z-coordinate of the grid point.

FGF ðzÞ ¼
z�Az

Lz�Az
ð1� FtÞ þ Ft; z � Az;

z
Az
ðFt � 0:1Þ þ 0:1; z < Az:

8<
: ð10Þ

Az is the z-coordinate of the lower boundary of the Apical
Zone, Lz the z-dimension of the grid itself, Ft the
FGFThreshold, and z the proximo-distal position.

TGF-� also plays a role in our customized Cell-Type-
Map. Cells can be of type NonCondensing or Conden-

sing, with Condensing cells being more adhesive. When
a cell outside the Apical Zone occupies a point in the grid
where the TGF-� concentration exceeds a threshold, the cell
becomes Condensing, otherwise the cell is NonConden-

sing. Cells are initially NonCondensing and cells cannot
condense within the Apical Zone. Fig. 8 shows the state
diagram for these cell types. Only Condensing cells have
an energy term for haptotaxis to fibronectin (8).

We implement the algorithm for domain growth in
COMPUCELL3D as a Steppable object. We define the cell
Density as follows:

Density ¼ C

T
� 100; ð11Þ

where C is the total number of pixels which contain cells, T
is the total number of pixels, and we specify a range box, the
domain over which to calculate the density. We also specify
the input variables delay (in timesteps), threshold

(percentage), and n (number of rows to grow at a time)
for simulations with growing domains. If the density within
the range box exceeds the threshold, the mathematical
grid grows by n rows in the z direction. A growth step turns
off cell mitosis for delay steps, and the algorithm repeats.
This delay allows the cells time to cluster and fill in the

n initially empty, added rows. Fig. 9 shows the domain-

growth algorithm in COMPUCELL3D.
Mitosis rates come from [54]. The volume of a mesench-

ymal cell of approximately 15 �m diameter is 1:8� 103 �m3

and its surface area is approximately 1:8� 102 �m2. The

simulation starts with eoght cells, and eventually grows to

contain 13,902 cells. Since the typical CPM cell has a target

volume of 120 pixels, the length scale is 3 �m per lattice site.
Fig. 10a shows our simulation of 3D limb growth and

pattern formation at 2250 MCS, 3,250 MCS, and 4,250 MCS,

visualized using Ogle [72]. We ran the simulation for

4,250 MCS, which took 7 hours, 1 minute, and 13 seconds

on a 2.4 GHz Intel Xeon processor with 1 GB of RAM. We

showthree screenshots and for clarityhave superimposed the

Condensing cells (gray) on the grid containing all the cells.

NonCondensing cells are red. Note the Apical Zone (pink

cells) at the distal end of the limb,where no cell condensation

can occur. Fig. 10b shows elliptical cross-sections of the fully

formed limb and illustrates the formation of cylindrical

chondrogenic structures. This model represents an extension

and improvement of that of Hentschel et al. [38], in that it

represents the entire limb in three dimensions and its

constituent cells as extended objects which react to their

complex microenvironments. Like the earlier model, how-

ever, it generates a simplified, but clearly limb-like, skeletal

pattern solely on the basis of experimentally-confirmed cell-

biological ingredients and interactions and well-established

biophysical processes. Simulations with different parameter

choices from those we show here confirm that the model

would reproduce experimental manipulations such as im-

plantationof a sourceof themorphogenSonic hedgehog,which

widens the limb tip and, consequently, leads to extra digits

[75]. In particular, in related studies we show that changes in

the parameters corresponding to known genetic or surgical

alterations in the core components of the simulation lead to

biologically-observed outcomes, such as fusion of skeletal

elements (see Fig. 2 in [16]).

284 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 2, NO. 4, OCTOBER-DECEMBER 2005

Fig. 7. Two-dimensional simulation without the Apical Zone: one side
grows faster than the other because the noncondensing zone is not
connected.

Fig. 8. Cell-Type-Map implemented using COMPUCELL3D for the

sample simulation.

Fig. 9. Growth algorithm.

7 CONCLUSIONS

We have presented an extended, 3D version of the COMPU-

CELL modeling environment. COMPUCELL3D is faster and
uses much less memory than COMPUCELL. COMPUCELL3D
computes the time evolution of differentiating cells in 3D
using a stochasticCPMandaCell-Type-Map implementedas
a discrete cellular automaton. Continuum reaction-diffusion
equations model chemical signaling.

We have verified the correctness of COMPUCELL3D by
simulating skeletal patterning in the avian limb. Our
RD equations model a core cellular-biochemical network
involving activating (TGF-�) and inhibitory morphogens,
the ECM protein fibronectin, a growth factor (FGF) and its
receptors, all of which experiments show to be essential to
limb development. From this model, using realistic spatial
scales for our lattice, we observe the emerging spatiotem-
poral development of the skeleton. The Cell-Type-Map uses
biological information about chondrogenesis to model the
transition from mesenchymal to condensing cells. Finally,
the CPM uses relative cell-adhesion parameters that sur-
face-tension experiments on different cell types can
determine. The literature provides volumes and mitosis
rates. In related work we have shown how our model can
predict skeletal element fusion [16].

We can extend COMPUCELL3D directly using C++
plugins, or more abstractly by describing arbitrary Cell-
Type-Maps, chemical fields, and energy functions using
BIOLOGO, an XML-based domain-specific language for
morphogenesis.

We are currently extending COMPUCELL3D to integrate
more realistic geometry, specifically irregular grids and
moving boundaries. These involve more careful pixel and

neighbor-selection algorithms, which must discard pixels

outside the moving boundary. We have also developed a

RAD solver which runs with the CPM [23].
We are creating a parallel version of COMPUCELL3D,

which will more easily accommodate very large and long

simulations. Parallelization is somewhat challengingbecause

an event-driven, kinetic Monte Carlo process underlies

COMPUCELL3D, requiring complex block-parallelization

algorithms [91], [70], [82].

ACKNOWLEDGMENTS

This research was partially funded by US National Science

Foundation grants IBN-0083653, IBN-0313730, and ACI-

0135195. James A. Glazier acknowledges support from

NASA grant NAG3-1619, an IBM Innovation Institute

Award, and a Pervasive Technology Laboratories Fellow-

ship. Trevor Cickovski was funded by an Arthur J. Schmitt

Fellowship. Special thanks to Kedar Aras, Joseph Coffland,

Chris Mueller, and Todd Schneider for their contributions

to the design of COMPUCELL3D.

REFERENCES

[1] M.S. Alber, T. Glimm, H.G.E. Hentschel, B. Kazmiercazk, and S.A.
Newman, “Stability of N-Dimensional Patterns in a Generalized
Turing System: Implications for Biological Pattern Formation,”
Nonlinearity, vol. 18, no. 1, pp. 125-138, 2005.

[2] M.S. Alber, H.G.E. Hentschel, B. Kazmiercazk, and S.A. Newman,
“Existence of Solutions to a New Model of Biological Pattern
Formation,” J. Math. Analysis and Applications, 2005.

[3] M.S. Alber, Y. Jiang, and M.A. Kiskowski, “Lattice Gas Cellular
AutomatonModel for Rippling andAggregation inMyxobacteria,”
Physica D, vol. 191, nos. 3-4, pp. 343-358, 2004.

CICKOVSKI ET AL.: A FRAMEWORK FOR THREE-DIMENSIONAL SIMULATION OF MORPHOGENESIS 285

Fig. 10. (a) Three-dimensional chicken limb growth and patterning visualized with Ogle. On top of a visualization of all cells, we superimpose one

showing only Condensing cells (in gray) for clarity. Apical Zone cells are pink. No condensation occurs in the Apical Zone. (b) Thick cross sections

of fully grown avian limb bud from (a). Once again, we superimposed the Condensing cells for clarity. Color scheme is the same as in (a);

NonCondensing cells are red and Condensing cells are gray.

[4] M.S. Alber, M.A. Kiskowski, J.A. Glazier, and Y. Jiang, “On
Cellular Automaton Approaches to Modeling Biological Cells,”
IMA Math. Systems Theory in Biology, Comm., and Finance,
J. Rosenthal and D.S. Gilliam, eds., vol. 134, pp. 1-39, Springer-
Verlag, 2003.

[5] M.S. Alber, M.A. Kiskowski, and Y. Jiang, “Two-Stage Aggregate
Formation via Streams in Myxobacteria,” Physical Rev. Letters,
vol. 93:068301, 2004.

[6] A. Alexandrescu, Modern C++ Design: Generic Programming and
Design Patterns Applied. Reading, Mass.: Addison-Wesley, 2001.

[7] A. Arkin, J. Ross, and H.H. McAdams, “Stochastic Kinetic
Analysis of Developmental Pathway Bifurcation in Phage Lamb-
da-Infected Escherichia Coli Cells,” Genetics, vol. 149, no. 4,
pp. 1633-1648, 1998.

[8] S. Artz and S. Trimper, “Competing Glauber and Kawasaki
Dynamics,” Int’l J. Modern Physics B, vol. 12, no. 23, pp. 2385-2392,
1998.

[9] M. Asipauskas, M. Aubouy, J.A. Glazier, F. Graner, and Y. Jiang,
“A Texture Tensor to Quantify Deformations: The Example of
Two-Dimensional Flowing Foams,” Granular Matter, vol. 5, no. 2,
pp. 71-74, 2003.

[10] J.B. Bassingthwaighte, “Strategies for the PHYSIOME Project,”
Annals of Biomedical Eng., vol. 28, no. 8, pp. 1043-1058, 2000.

[11] D.A. Beysens, G. Forgacs, and J.A. Glazier, “Cell Sorting is
Analogous to Phase Ordering in Fluids,” Proc. Nat’l Academy of
Science, vol. 97, no. 17, pp. 9467-9471, 2000.

[12] D.A. Beysens, G. Forgacs, and J.A. Glazier, “Embryonic Tissues
are Viscoelastic Materials,” Canadian J. Physics, vol. 78, no. 3,
pp. 243-251, 2000.

[13] BioSPICE, Biospice Community Web Site: Biology in Silico,
https://community.biospice.org, 2005.

[14] C. Blilie, “Patterns in Scientific Software; An Introduction,”
Computing in Science and Eng., vol. 4, no. 3, pp. 48-53, 2002.

[15] Cell-O-Sim, Cell-O-Sim Web site, http://mbi.dkfz-heidelberg.de/
projects/cellsim/cellosim, 2005.

[16] R. Chaturvedi, C. Huang, J.A. Izaguirre, S.A. Newman, J.A.
Glazier, and M.S. Alber, “A Hybrid Discrete-Continuum Model
for 3-D Skeletogenesis of the Vertebrate Limb,” Lecture Notes in
Computer Science, vol. 3305, pp. 543-552, Springer Verlag, 2004.

[17] R. Chaturvedi, C. Huang, B. Kazmierczak, T. Schneider, J.A.
Izaguirre, S.A. Newman, J.A. Glazier, and M.S. Alber, “On
Multiscale Approaches to 3-Dimensional Modeling Of Morpho-
genesis,” J. Royal Soc. Interface, vol. 2, pp. 237-253, 2005.

[18] R. Chaturvedi, J.A. Izaguirre, C. Huang, T. Cickovski, P. Virtue, G.
Thomas, G. Forgacs, M.S. Alber, H.G.E. Hentschel, S.A. Newman,
and J.A. Glazier, “Multi-Model Simulations of Chicken Limb
Morphogenesis,” Lecture Notes in Computational Science, vol. 2659,
pp. 39-49, Springer-Verlag, 2003.

[19] T. Cickovski and J.A. Izaguirre, “Biologo, A Domain-Specific
Language for Morphogenesis,” ACM Trans. Programming Lan-
guages and Systems, http://www.nd.edu/tcickovs/acmtr2e.pdf,
2005.

[20] J. Coffland, 2003, Basicutils, http://compucell.sourceforge.net/
phpwiki/index.php/BasicUtils.

[21] COMPUCELL, “COMPUCELL: A Framework for Three-Dimen-
sional Simulation of Morphogenesis,”http://sourceforge.net/
projects/compucell/, Sept. 2004.

[22] E.J. Crampin, W.W. Hackborn, and P.K. Maini, “Pattern Forma-
tion in Reaction-Diffusion Models with Nonuniform Domain
Growth,” Bull. Math. Biology, vol. 64, no. 4, pp. 747-769, 2002.

[23] D. Dan and J.A. Glazier, “Study of Diffusion and Chemotaxis in
Cell Motion Using Cellular Potts Model,” submitted for publica-
tion, 2005.

[24] DARPA, Darpa news release, DARPA Releases BioSPICE Software,
https://community.biospice.org/public/bio_release.pdf, 2002.

[25] R. Dillon and H.G. Othmer, “A Mathematical Model for Out-
growth and Spatial Patterning of the Vertebrate Limb Bud,”
J. Theoretical Biology, vol. 197, no. 3, pp. 297-330, 1999.

[26] D. Duguay, R.A. Foty, and M.S. Steinberg, “Cadherin-Mediated
Cell Adhesion and Tissue Segregation: Qualitative and Quantita-
tive Determinants,” Developmental Biology, vol. 253, no. 2, pp. 309-
323, 2003.

[27] E-Cell, Inst. for Advanced Biosciences: E-cell Project, http://
www.e-cell.org, 2005.

[28] R. Edwards, H.T. Siegelmann, K. Aziza, and L. Glass, “Symbolic
Dynamics and Computation in Model Gene Networks,” Chaos,
vol. 11, no. 1, pp. 160-169, 2001.

[29] B. Ermentrout, “Stripes or Spots? Nonlinear Effects in Bifurcation
of Reaction-Diffusion Equations on the Square,” Proc. Royal Soc.
London A., vol. 434, pp. 413-417, 1991.

[30] R.A. Foty, C.M. Pfleger, G. Forgacs, and M.S. Steinberg, “Surface
Tensions of Embryonic Tissues Predict Their Mutual Envelop-
ment Behavior,” Development, vol. 122, no. 5, pp. 1611-1620, 1996.

[31] D.T. Gillespie, “A General Method for Numerically Simulating the
Stochastic Time Evolution of Coupled Chemical Reactions,”
J. Chemical Physics, vol. 22, no. 4, pp. 403-434, 1976.

[32] J.A. Glazier and F. Graner, “Simulation of the Differential
Adhesion Driven Rearrangement of Biological Cells,” Physical
Rev. E, vol. 47, no. 3, pp. 2128-2154, 1993.

[33] D. Godt and U. Tepass, “Drosophila Oocyte Localization is
Mediated by Differential Cadherin-Based Adhesion,” Nature,
vol. 395, no. 6700, pp. 387-391, 1998.

[34] A. Gonzalez-Reyes and D. St. Johnston, “The Drosophila Ap Axis is
Polarised by the Cadherin-Mediated Positioning of the Oocyte,”
Development, vol. 125, no. 18, pp. 3635-3644, 1998.

[35] F. Graner and J.A. Glazier, “Simulation of Biological Cell Sorting
Using a Two-Dimensional Extended Potts Model,” Physical Rev.
Letters, vol. 69, no. 13, pp. 2013-2016, 1992.

[36] T. Hayashi and R. Carthew, “Surface Mechanics Mediate Pattern
Formation in the Developing Retina,” Nature, vol. 431, no. 7009,
pp. 647-652, 2004.

[37] L.I. Held, Imaginal Discs: The Genetic and Cellular Logic of Pattern
Formation. New York: Cambridge Univ. Press, 2002.

[38] H.G.E. Hentschel, T. Glimm, J.A. Glazier, and S.A. Newman,
“Dynamical Mechanisms for Skeletal Pattern Formation in the
Vertebrate Limb,” Proc. Royal Soc. London B Biolgical Science,
vol. 271, no. 1549, pp. 1713-1722, 2004.

[39] M.L. Hines and N.T. Carnevale, “The NEURON Simulation
Environment,” Neural Computation, vol. 9, no. 6, pp. 1179-1209,
1997.

[40] P. Hogeweg, “Evolving Mechanisms of Morphogenesis: On the
Interplay between Differential Adhesion and Cell Differentiation,”
J. Theoretical Biology, vol. 203, no. 4, pp. 317-333, 2000.

[41] P. Hogeweg, “Shapes in the Shadow: Evolutionary Dynamics of
Morphogenesis,” Artificial Life, vol. 6, no. 1, pp. 85-101, 2000.

[42] P. Hogeweg, “Computing an Organism: On the Interface between
Informatic and Dynamic Processes,” Biosystems, vol. 64, nos. 1-3,
pp. 97-109, 2002.

[43] V. Hösel and V. Liebscher, “Some Thoughts on the Modeling of
Biofilms,” Math. and Statistics, http://ibb.gsf.de/preprints/1999/
pp99-27.ps, 1999.

[44] J.A. Izaguirre, R. Chaturvedi, C. Huang, T. Cickovski, J. Coffland,
G. Thomas, G. Forgacs, M.S. Alber, G. Hentschel, S.A. Newman,
and J.A. Glazier, “CompuCell, a Multimodel Framework for
Simulation of Morphogenesis,” Bioinformatics, vol. 20, no. 7,
pp. 1129-1137, 2004.

[45] Y. Jiang, M. Asipauskas, J.A. Glazier, M. Aubouy, and F. Graner,
“Ab Initio Derivation of Stress and Strain in Fluid Foams,” Foams,
Emulsions and their Applications, P. Zitha, J. Banhart, and G. Verbist,
eds., pp. 297-304, Verlag MIT Publishing, 2000.

[46] Y. Jiang, H. Levine, and J.A. Glazier, “Possible Cooperation of
Differential Adhesion and Chemotaxis in Mound Formation of
Dictyostelium,” European Biophysics J., vol. 75, no. 6, pp. 2615-2625,
1998.

[47] Y. Jiang, P. Swart, A. Saxena, M. Asipauskas, and J.A. Glazier,
“Hysteresis and Avalanches in Two-Dimensional Foam Rheology
Simulations,” Physical Rev. E, vol. 59, no. 5, pp. 5819-5832, 1999.

[48] H. De Jong, “Modeling and Simulation of Genetic Regulatory
Systems: A Literature Review,” J. Computational Biology, vol. 9,
no. 1, pp. 69-105, 2002.

[49] W. Keller, P. König, and T.J. Richmond, “Crystal Structure of a
Bzip/DNA Complex at 2.2 �A: Determinants of DNA Specific
Recognition,” J. Molecular Biology, vol. 254, no. 4, pp. 657-667, 1995.

[50] M.A. Kiskowski, M.S. Alber, G.L. Thomas, J.A. Glazier, N.B.
Bronstein, J. Pu, and S.A. Newman, “Interplay between Activator-
Inhibitor Coupling and Cell-Matrix Adhesion in a Cellular
Automaton Model for Chondrogenic Patterning,” Developmental
Biology, vol. 271, no. 2, pp. 372-387, 2004.

[51] M.A. Kiskowski, Y. Jiang, and M.S. Alber, “Role of Streams in
Myxobacteria Aggregate Formation,” Physical Biology, vol. 1, no. 3,
pp. 173-183, 2004.

[52] S.P. Kumar and J.C. Feidler, “Biospice, 2,” Omics: A J. Integrative
Biology, vol. 7, no. 4, p. 335, 2003.

286 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 2, NO. 4, OCTOBER-DECEMBER 2005

[53] K.A. Landman, G.J. Pettet, and D.F. Newgreen, “Mathematical
Models of Cell Colonization of Uniformly Growing Domains,”
Bull. Math. Biology, vol. 65, no. 2, pp. 235-262, 2003.

[54] J.H. Lewis, “Fate Maps and the Pattern of Cell Division: A
Calculation for the Chick Wing-Bud,” J. Embryology and Experi-
mental Morphogenesis, vol. 33, no. 2, pp. 419-434, 1975.

[55] A.F.M. Marée, “From Pattern Formation to Morphogenesis,” PhD
thesis, Utrecht Univ., The Netherlands, Oct. 2000.

[56] A.F.M. Marée and P. Hogeweg, “How Amoeboids Self-Organize
into a Fruiting Body: Multicellular Coordination in Dictyostelium
Discoideum,” Proc. Nat’l Academy of Science, vol. 98, no. 7, pp. 3879-
3883, 2001.

[57] A.F.M. Marée, A.V. Panfilov, and P. Hogeweg, “Migration and
Thermotaxis of Dictyostelium Discoideum Slugs, A Model Study,”
J. Theoretical Biology, vol. 199, no. 3, pp. 297-309, 1999.

[58] A.F.M. Marée, A.V. Panfilov, and P. Hogeweg, “Phototaxis during
the Slug Stage of Dictyostelium Discoideum: A Model Study,” Proc.
Royal Soc. of London Series B-Biological Sciences, vol. 266, no. 1426,
pp. 1351-1360, 1999.

[59] H. Meinhardt, Models of Biological Pattern Formation. London:
Academic Press, 1982.

[60] H. Meinhardt, “Pathways and Building Blocks: Review of
“Modularity in Development and Evolution,”” Nature, G. Schlos-
ser and G.P. Wagner, eds., vol. 430, no. 7003, p. 970, 2004.

[61] R.M.H. Merks and J.A. Glazier, “A Cell-Centered Approach to
Developmental Biology,” Physica A, vol. 352, no. 1, pp. 113-130,
2005.

[62] R.M.H. Merks, S.A. Newman, and J.A. Glazier, “Cell-Oriented
Modeling of In Vitro Capillary Development,” Proc. Cellular
Automata: Sixth Int’l Conf. Cellular Automata for Research and
Industry, ACRI 2004, vol. 3305, pp. 425-434, 2004.

[63] T. Miura and K. Shiota, “Tgf-beta 2 Acts as an “Activator”
Molecule in Reaction-Diffusion Model and is Involved in Cell
Sorting Phenomenon in Mouse Limb Micromass Culture,”
Developmental Dynamics, vol. 217, no. 3, pp. 241-249, 2000.

[64] M.Z. Moftah, S.A. Downie, N.B. Bronstein, N. Mezentseva, J. Pu,
P.A. Maher, and S.A. Newman, “Ectodermal FGFs Induce
Perinodular Inhibition of Limb Chondrogenesis in Vitro and in
Vivo via FGF Receptor 2,” Developmental Biology, vol. 249, no. 2,
pp. 270-282, 2002.

[65] A. Mogilner and L. Edelstein-Keshet, “Regulation of Actin
Dynamics in Rapidly Moving Cells: A Quantitative Analysis,”
Biophysics J, vol. 83, no. 3, pp. 1237-1258, 2002.

[66] J.C.M. Mombach, R.M.C. de Almeida, G.L. Thomas, A. Upad-
hyaya, and J.A. Glazier, “Bursts and Cavity Formation in Hydra
Cell Aggregates: Experiments and Simulations,” Physica A,
vol. 297, nos. 3-4, pp. 495-508, 2001.

[67] J.C. M. Mombach and J.A. Glazier, “Single Cell Motion in
Aggregates of Embryonic Cells,” Physical Rev. Letters, vol. 76,
no. 16, pp. 3032-3035, 1996.

[68] J.C. M. Mombach, D. Robert, F. Graner, G. Gillet, G.L. Thomas, M.
Idiart, and J.P. Rieu, “Rounding of Aggregates of Biological Cells:
Experiments and Simulations,” Physica A, vol. 352, pp. 525-534,
2005.

[69] NEURON, Neuron Web site, 2005, http://www.neuron.yale.edu/
neuron.

[70] M.E.J. Newman and G.T. Barkema, Monte Carlo Methods in
Statistical Physics. Oxford Univ. Press, 1999.

[71] S.A. Newman and H.L. Frisch, “Dynamics of Skeletal Pattern
Formation in Developing Chick Limb,” Science, vol. 205, no. 4407,
pp. 662-668, 1979.

[72] OGLE, Ogle Large-Scale Scientific Data Visualizer, 2001, http://
www.cora.nwra.com/Ogle.

[73] W.B. Ouchi, J.A. Glazier, J.P. Rieu, A. Upadhyaya, and Y. Sawada,
“Improving the Realism of the Cellular Potts Model in Simulation
of Biological Cells,” Physica A, vol. 329, nos. 3-4, pp. 451-458, 2003.

[74] L. Raeymaekers, “Dynamics of Boolean Networks Controlled by
Biologically Meaningful Functions,” J. Theoretical Biology, vol. 218,
no. 3, pp. 331-341, 2002.

[75] R.D. Riddle, R.L. Johnson, E. Laufer, and C. Tabin, “Sonic
Hedgehog Mediates the Polarizing Activity of the ZPA,” Cell,
vol. 75, no. 7, pp. 1401-1416, 1993.

[76] J.P. Rieu, A. Upadhyaya, J.A. Glazier, B.O. Noryuki, and Y.
Sawada, “Diffusion and Deformations of Single Hydra Cells in
Cellular Aggregates,” European Biophysics J., vol. 79, no. 4, pp. 1903-
1914, 2000.

[77] N.J. Savill and P. Hogeweg, “Modelling Morphogenesis: From
Single Cells to Crawling Slugs,” J. Theoretical Biology, vol. 184, no. 3,
pp. 229-235, 1997.

[78] J. Schaff, C.C. Fink, B. Slepchenko, J.H. Carson, and L.M. Loew, “A
General Computational Framework for Modeling Cellular Struc-
ture and Function,” European Biophysics J., vol. 73, no. 3, pp. 1135-
1145, 1997.

[79] A. Shalloway and J.R. Trott, Design Patterns Explained: A New
Perspective on Object-Oriented Design. Boston: Addison-Wesley,
2002.

[80] M.S. Steinberg, “Reconstruction of Tissues by Dissociated Cells,”
Science, vol. 141, no. 3579, pp. 401-408, 1963.

[81] M.S. Steinberg, “Goal-Directedness in Embryonic Development,”
Integrative Biology, vol. 1, pp. 49-59, 1998.

[82] M.A. Stijnman, R.H. Bisseling, and G.T. Barkema, “Partitioning 3D
Space for Parallel Many-Particle Simulations,” Computer Physics
Comm., vol. 149, no. 3, pp. 121-134, 2003.

[83] K. Takahashi, N. Ishikawa, Y. Sadamoto, S. Ohta, A. Shiozawa, F.
Miyoshi, Y. Naito, Y. Nakayama, and M. Tomita, “E-CELL2:
Multi-Platform E-CELL Simulation System,” Bioinformatics, vol. 19,
no. 13, pp. 1727-1729, 2003.

[84] D.W. Thompson, On Growth and Form. Cambridge Univ. Press,
1917.

[85] A. Turing, “The Chemical Basis of Morphogenesis,” Phil. Trans.
Roy. Soc. London, B, vol. 237, pp. 37-72, 1952.

[86] UNFP, User Notes on Fortran Programming (UNFP): An Open
Cooperative Practical Guide, 2005, http://www.ibiblio.org/pub/
languages/fortran/unfp.html.

[87] A. Upadhyaya, “Thermodynamic and Fluid Properties of Cells,
Tissues and Membranes,” PhD thesis, Univ. of Notre Dame, 2000.

[88] A. Upadhyaya, J.P. Rieu, J.A. Glazier, and Y. Sawada, “Anom-
alous Diffusion in Two-Dimensional Hydra Cell Aggregates,”
Physica A, vol. 293, nos. 3-4, pp. 549-558, 2001.

[89] Virtual Cell, National Resource for Cell Analysis and Modeling,
http://www.nrcam.uchc.edu, 2005.

[90] G. von Dassow and E. Meir, “Exploring Modularity with
Dynamical Models of Gene Networks,” Modularity in Development
and Evolution, G. Schlosser and G.P. Wagner, eds., pp. 244-287,
2004.

[91] Y. Wallach and V. Conrad, “On Block Parallel Methods for Solving
Linear Equations,” IEEE Trans. Computers, vol. 29, no. 5, pp. 354-
359, 1980.

[92] S. Wong, “A Cursory Study of the Thermodynamics and
Mechanical Properties of Monte-Carlo Simulations of the Ising
Model,” PhD thesis, Univ. of Notre Dame, Notre Dame, Indiana,
2005.

[93] M. Zajac, “Modeling Convergent Extension by Way of Anisotopic
Differential Adhesion,” PhD thesis, Univ. of Notre Dame, Notre
Dame, Indiana, 2002.

[94] M. Zajac, G.L. Jones, and J.A. Glazier, “Model of Convergent
Extension in Animal Morphogenesis,” Physical Rev. Letters, vol. 85,
no. 9, pp. 2022-2025, 2000.

[95] M. Zajac, G.L. Jones, and J.A. Glazier, “Simulating Convergent
Extension by Way of Anisotropic Differential Adhesion,”
J. Theoretical Biology, vol. 222, no. 2, pp. 247-259, 2003.

[96] W. Zeng, G.L. Thomas, S.A. Newman, and J.A. Glazier, “A Novel
Mechanism for Mesenchymal Condensation during Limb Chon-
drogenesis in Vitro,” Math. Modeling and Computing in Biology and
Medicine: Proc. Fifth Conf. European Soc. Math. and Theoretical
Biology, pp. 80-86, 2002.

CICKOVSKI ET AL.: A FRAMEWORK FOR THREE-DIMENSIONAL SIMULATION OF MORPHOGENESIS 287

Trevor M. Cickovski received the MS degree in
computer science and engineering from the
University of Notre Dame. He is in his fourth
year of graduate study in the Department of
Computer Science and Engineering at the
University of Notre Dame, Notre Dame, Indiana,
directed by Dr. Izaguirre. His current research
interests include domain-specific language de-
velopment, stochastic simulations of biocom-
plexity, and software engineering.

Chengbang Huang received the MS degree in
mathematics from the University of Notre Dame.
He is a doctoral candidate in the Department of
Computer Science and Engineering at the
University of Notre Dame, Notre Dame, Indiana,
directed by Dr. Izaguirre. His current research
interest is the use of a multimodel framework to
simulate avian limb growth.

Rajiv Chaturvedi received the PhD degree in
computational fluid dynamics from the Indian
Institute of Technology, Bombay, India. His
current research interests include computational
biology and software engineering. He works for
AgResearch Limited, a Crown Research Institute
in New Zealand, in the area of systems biology.
He is interested in developing models of biologi-
cal phenomena occurring at multiple scales, and
their integration.

Tilmann Glimm received the PhD degree in
mathematics from Emory University. He is a
postdoctoral research associate in the Emory
University PhysicsDepartment, Atlanta, Georgia,
where he is working on the mathematical model-
ing of limb development and mesenchymal cell
condensation. In general, his research interest is
the analysis of nonlinear partial differential equa-
tions. He has studied at the Technical University,
Berlin, Germany, and Emory University.

H. George E. Hentschel received the PhD
degree in theoretical chemistry from the Uni-
versity of Cambridge, Cambridge, England. He
is a professor of physics at Emory University,
Atlanta, Georgia. His current research interests
are nonlinear and biological physics.

Mark S. Alber received the PhD degree in
mathematics from the University of Pennsylva-
nia, Philadelphia, Pennsylvania. He is a profes-
sor of mathematics, concurrent professor of
physics, and director of the Interdisciplinary
Center for the Study of Biocomplexity (ICSB) at
the University of Notre Dame, Notre Dame,
Indiana. His current research interests include
methods of nonlinear dynamical systems and
statistical mechanics with applications in biology.

James A. Glazier received the BA degree in
physics and mathematics from Harvard Col-
lege, Cambridge, Massachusetts, and the PhD
degree in soft condensed matter physics from
the University of Chicago, Chicago, Illinois. He
is a professor of physics, adjunct professor of
informatics and biology, and director of the
Biocomplexity Institute at Indiana University,
Bloomington, Indiana. His current research
interests include biophysics, development,

DNA sequence analysis, neuroscience, and the mechanics of liquid
foams. He is a fellow of the Institute of Physics.

Stuart A. Newman received the AB degree from
Columbia University, New York, and the PhD
degree in chemical physics from the University
of Chicago, Chicago, Illinois. He is a professor of
cell biology and anatomy at New York Medical
College, Valhalla, New York. He has contributed
to several scientific fields, including biophysical
chemistry, developmental biology, and evolu-
tionary theory. His current research interests
include the mechanisms of vertebrate limb

development, the dynamics of collagen assembly, and the evolution of
mechanisms of morphogenesis.

Jesús A. Izaguirre received the PhD degree in
computer science from the University of Illinois
at Urbana-Champaign, Urbana, Illinois, in 1999.
Dr. Izaguirre received a CAREER Award from
the US National Science Foundation in 2001. He
is an associate professor of computer science
and engineering at the University of Notre
Dame, Notre Dame, Indiana. His current re-
search is on efficient methods in chemistry and
biology, particularly molecular dynamics, Monte

Carlo methods, cellular automata, and analysis of biological networks.
He is also interested in the portable implementation of high-performance
software for scientific computing. He is a member of the IEEE and the
IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

288 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 2, NO. 4, OCTOBER-DECEMBER 2005

