
How the 3D development, or morpho-
genesis, of multicellular organisms
arises from a single-celled fertilized
zygote with a 1D genome is still a

challenge in postgenomic biology. But by treating
cells with a phenomenological approach that ig-
nores much of the detail of intracellular biochem-
istry, we can reduce multiple complex biochemical
interactions to a small set of behaviors such as
movement, division, death, differentiation, shape

changes, and cell–cell communication. To tackle
these sorts of problems, researchers often use prob-
lem-solving environments (PSEs) because they let
users focus on a particular domain of expertise
without requiring knowledge of low-level modules.
A molecular modeling PSE, for example, lets
chemists transparently set up simulations of vari-
ous systems at different temperatures, pressures,
and so on, whereas an ecosystem PSE lets ecolo-
gists set up environments and add entities, organ-
isms, and evolutionary models.

Until recently, most developers wrote scientific
software programs in C or Fortran to enhance per-
formance, but the procedural code structure in
such languages prevents straightforward grouping
of related functionalities, thus complicating exten-
sion and maintenance. Procedural structures are
also inconvenient when software goals change be-
cause new requirements might call for making the
same change to multiple related procedures. Ob-
ject-oriented programming addresses these prob-
lems with characteristic collections of objects, each
of which is an independent unit encapsulating a
specific behavior. Design patterns1 also provide
reusable solutions to commonly occurring object-
oriented problems in software design by making
the overall implementation more flexible, modular,
and ultimately easier to maintain. This modular de-
sign and maintainability is what allows PSEs to
“keep up” as scientific models evolve by making

50 THIS ARTICLE HAS BEEN PEER-REVIEWED. COMPUTING IN SCIENCE & ENGINEERING

From Genes to Organisms Via the Cell
A Problem-Solving Environment
for Multicellular Development

N E W
D I R E C T I O N S

To gain performance, developers often build scientific applications in procedural languages,
such as C or Fortran, which unfortunately reduces flexibility. To address this imbalance, the
authors present CompuCell3D, a multitiered, flexible, and scalable problem-solving
environment for morphogenesis simulations that’s written in C++ using object-oriented
design patterns.

TREVOR CICKOVSKI, KEDAR ARAS, MARK S. ALBER,
AND JESUS A. IZAGUIRRE

University of Notre Dame
MACIEJ SWAT AND JAMES A. GLAZIER

Indiana University
ROELAND M.H. MERKS

Flanders Institute for Biotechnology and Ghent University
TILMANN GLIMM

Western Washington University
H. GEORGE E. HENTSCHEL

Emory University
STUART A. NEWMAN

New York Medical College

1521-9615/07/$25.00 © 2007 IEEE

Copublished by the IEEE CS and the AIP

JULY/AUGUST 2007 51

modifications and extensions easier and by in-
creasing code reusability.

Roeland Merks and his colleagues2 recently
listed a set of requirements for morphogenesis
PSEs—namely, that they should implement the bi-
ological and physical behavior of single entities
(such as cells and organs), provide the infrastruc-
ture for them to interact, and offer the tools neces-
sary to transparently set up simulations, execute
and visualize them, and analyze the resulting struc-
tures. Accordingly, we developed CompuCell3D,
a 3D multiscale PSE for modeling morphogenesis
that combines discrete cellular automata and con-
tinuum methods for flexibility and scalability. It im-
plements James Glazier and François Graner’s
Cellular Potts Model (CPM) as a cellular automa-
ton to govern cell interactions, along with reaction-
diffusion partial differential equation (PDE) solvers
to establish external chemical gradients. Compu-
Cell3D takes a cell-centered3 approach to mor-
phogenesis modeling by simulating cells whose
behavioral rules and biophysical properties the user
can easily define as PSE features, either by coding
those features in C++ or by writing programs in Bi-
ologo, a high-level domain-specific language
(DSL). To facilitate experiments with these mod-
els, we also developed an interactive GUI called
CompuCellPlayer.

CompuCell3D’s Architecture
Figure 1 shows CompuCell3D’s modular three-
tiered architecture. Tier 1 comprises the core of
CompuCell3D’s simulation engine, which includes
mathematical models of morphogenesis as well as
a simulation lattice. Developers typically operate at
this level to enhance the PSE’s functional capabil-
ities. Biologo appears in Tier 2; the language lets
users model problems at an abstract level, with a
compiler converting the syntax into simulation-en-
gine source code. Tier 3 is the presentation layer,
which includes a visualization toolkit for cell imag-
ing along with a GUI that lets users configure and
run simulations. Each tier is self-contained and in-
teracts with the other tiers through an API.

Tier 1: CompuCell3D’s Core
The CPM is the core of CompuCell3D’s frame-
work, and it’s designed to accurately simulate cell
interactions and movement. Specifically, it uses a
lattice to describe cells and then associates an inte-
ger index with each lattice site (voxel) to identify
each cell’s spatial extent and location at any given
instant. The index value at a lattice site is � if the
site lies in cell �. Domains in the lattice—that is,
collections of lattice sites with the same index—

represent cells, so a cell is thus a set of discrete
components that can rearrange to produce cell-
shape changes and motion.

Instead of representing the forces that cause cells
to rearrange directly, the CPM aggregates them
into an effective energy E, the gradient of which is
the force acting at any point. Because of these
forces and the cellular environment’s effectively in-
finite viscosity (no inertia), the cells gradually re-
arrange to reduce the pattern’s generalized energy.
The effective energy contains terms describing cell
interactions, motion under cytoskeletal fluctua-
tions, and response to external chemical stimuli; its
parameters change during cell growth, death, divi-
sion, and differentiation. We use the term effective
energy because it contains terms that mimic ener-
gies (for example, a cell’s response to a chemotac-
tic gradient). Equation 1 shows a typical energy E:

E = EContact + EVolume + ESurface + EChemical. (1)

A modified Metropolis algorithm for Monte
Carlo Boltzmann dynamics implements cell mem-
brane fluctuations (each term describes a different
biological mechanism). The contact energy de-
scribes the net adhesion and repulsion between two
cell membranes and is the product of the binding
energy per unit area and the total area. Volume and
surface energy terms implement constraints on cel-
lular volume and surface area, respectively—they’re
quadratically proportional to a cell’s current vol-
ume (surface area) and a target value, which can
vary between cell types. Chemical energy can re-
sult from cellular chemotaxis, or oriented move-
ment, toward an external chemical gradient, or
haptotaxis, which restricts reactions to a selected set
of cell types.

We used the Facade design pattern1 to implement

Simulator

Fields3D

Plugins

Boundary

Intermediate
program

Compiler back
end (translation)

Compiler front
end (parsing)

Tier 3: Presentation layer (visualization toolkit)

Tier 2: User-level abstraction (domain-specific language—Biologo)

Tier 1: Developer layer (simulation engine)

CompuCellPlayer (generates .png screenshots)

BIOLOGO
program

Potts3D

Automation

Figure 1. CompuCell3D’s architecture. We can modify, extend, or
replace any tier without affecting the other tiers.

52 COMPUTING IN SCIENCE & ENGINEERING

the CPM. A Facade pattern defines a common in-
terface for unrelated objects, enabling them to in-
teract without prior knowledge of their internals.
Potts3D—our reference implementation of the
generic CPM—uses the Facade pattern and con-
sists of collections of objects or modules that work
together to implement specific functionality. Us-
ing a standardized interface for our modules en-
sures that we can upgrade them without a complete
redesign of Potts3D.

Cell structure and differentiation. In both mathe-
matical and computational modeling, the biologi-
cal cell provides a useful level of abstraction that
hides subcellular details.3 We use a standard object
model to represent cells, treating each cell as an ob-
ject with certain attributes.

During morphogenesis, cells differentiate from
initial multipotent stem cells into specialized cell
types, and this qualitative change in cell behavior is
generally abrupt and irreversible. We use a varia-
tion of the State design pattern,1 which lets an ob-
ject alter its behavior when its internal state
changes, to implement cell differentiation via the
Automaton module. Instead of defining ab-
stractness for states, we define abstract transi-
tions—specifically, abstracting functionality for
transitioning to a particular state. In the presence

of irreversible type changes, this design saves PSE
size because the number of required classes grows
linearly with the number of states that have in-
coming transitions as opposed to the number of
states in general. During the simulation, we evalu-
ate a list of possible transitions whenever a cell
changes position or site to determine if the cell’s
state has changed. If so, we change the cell’s type;
otherwise, its state remains unchanged.

Lattice representation. CompuCell3D simulations
run on a lattice, as in Figure 2.4 Consider a rela-
tively small 2003-pixel lattice, with each pixel con-
suming a very conservative 32 bits; in three
dimensions, a naive implementation of the lattice
requires approximately 128 Mbytes of memory. Be-
cause cells in CompuCell3D are collections of pix-
els, we associate with every pixel a pointer to a cell
object (instead of storing an instance of a cell ob-
ject in every pixel). Assuming an average cell to be
a collection of 25 pixels, our lattice implementation
uses approximately 30 percent of the memory re-
quired in the naive implementation. Memory sav-
ings increase with increasing average cell size.

In our implementation, we abstract the
Field3D module such that the lattice implemen-
tation can use its own data structure to represent
the lattice itself (as hexagonal or square, for ex-
ample), which lets the Field3D module support
different types of lattices without modifying the
basic interface. In addition, Field3D can enforce
user-defined boundary conditions (using the
Boundary module) along each individual lattice
axis. We use the Factory Method design pattern1 to
promote loose coupling between the CPM lattice
and the boundary strategy because it models an
interface for creating an object, which at the time
of instantiation lets its subclasses decide which ob-
ject to create. The user subsequently inputs each
axis’s boundary strategy, which is instantiated ac-
cordingly at runtime.

Supporting multiple features. CompuCell3D also
lets users add or remove functionality from a sim-
ulation. A biologist might want to observe cell be-
havior with and without cell division, for example,
and an appropriate plug-in can implement that op-
tion. Plug-ins provide a clear structure for extend-
ing the simulation framework—fortunately, adding
features through plug-ins doesn’t affect the frame-
work’s core functionality. Table 1 lists the features
available in CompuCell3D; it shows plug-ins that
operate at the field level of modeling (such as PDE
solvers), and then those that operate at the cell
level, controlling individual cells’ properties.

2

2

2

2

2 3 3

3 3 3

33 3

3 3

3

3 3

3 3

21 1 1

1 1 1 1

1 1

1 1

1

ECM = 0

Figure 2. Example lattice in CompuCell3D. This
lattice contains three cells, consuming lattice
locations labeled 1, 2, and 3. Different cells (such
as 1 and 3, shaded the same color for clarity)
might have the same type. All other lattice
locations are labeled 0 to designate the
Extracellular Matrix (ECM).

JULY/AUGUST 2007 53

Tier 2: Biologo
Biologo extends XML to model multiple morpho-
genesis subprocesses, including cell differentiation,
volume constraints, intercellular adhesion, chemo-
taxis, haptotaxis, and reaction-diffusion. It inherits
XML syntax and semantics using extended XML
parsing libraries from Xerces (http://xml.apache.
org/xerces-c/), which also gives it XML’s inherent
extensibility. Biologo’s extensions for Compu-
Cell3D are implemented as XML modules that
convert transparently into dynamically loaded C++
plug-ins.

Translation of a Biologo program into the source
code for a CompuCell3D plug-in is a two-stage
process. The compiler front end parses and lexi-
cally analyzes the Biologo program, executes sev-
eral error-checking routines, and generates an
intermediate file containing simpler syntax, which
then passes through the code generator that
processes and translates the intermediate file into
C++. The intermediate syntax opens the door for
future implementation of a compiler that can im-
plement machine-independent optimizations dur-
ing generation of the intermediate representation,
which is uniform across architectures (unlike C++
code, which can be nonuniform). Intermediate
code saves the overhead of having to change the
code generator front-end modules to suit each plat-
form on which we deploy CompuCell3D.

Tier 3: The CompuCellPlayer
One major task of PSEs is to supply intuitive GUIs
and visualization tools, but scientific developers of-
ten neglect this area of software development or
treat it as a back-burner task. Early versions of
CompuCell3D lacked a GUI and outsourced visu-
alization to third-party external tools, but by defi-
nition a PSE requires an easy and understandable
interface for user interaction.

To address these issues, we developed a tool
called CompuCellPlayer to provide visualization
services and a front end to CompuCell3D. It dis-
plays the current simulation state in real time on
the user’s screen and saves the state in the form of
a graphical .png file on the hard drive for further
postprocessing. CompuCellPlayer also lets users
render objects in 2D and 3D, display chemical con-
centrations, pressures, and cell velocity fields, zoom
in or out, and toggle cell border display.

CompuCellPlayer is fully customizable and lets
users configure cell colors and borders as well as con-
centration and vector-field plots. Based on the XML
simulation description, the CompuCellPlayer
chooses and enables plots appropriate for the simu-
lation. Another useful feature is its ability to save
multiple simulation views during a single run—in-
cluding the cell, chemical, and velocity fields in the
form of screenshots—without having to repeat the
simulation. Overhead for this operation is negligible.

Name Function

AdvectionDiffusionSolver Solves an advection-diffusion equation on a cell field.
FlexibleDiffusionSolver A customizable solver of diffusion equations that also allows secretion, absorption, and dif-

fusion restriction by cell type. Also allows variable space step, time step, diffusion con-
stants, secretion rates, and number of fields.

BoundaryPenalty Enforces an energy penalty if a cell is close to a boundary, to prevent cells spreading on do-
main boundaries.

CellBoundaryTracker Provides locations of cell boundary voxels.
CellVelocity Tracks cell speeds.
CenterOfMass Tracks cell centers of mass.
Chemotaxis Implements cell chemotaxis to an external chemical field, with forces proportional to

chemical gradients.
ExternalPotential Imposes a directed potential, or force, on cells.
Growth Implements a cell density-dependent algorithm for domain growth. The lattice maintains

its current dimensions until cell density reaches a user-specified threshold, then it grows in
positive z by a user-specified amount.

LengthConstraint Implements anisotropic cells.
Mitosis Implements cell division.
SimpleClock Implements an internal timer for cells. Provides the ability to start a timer and decrement

until it hits zero.
Viscosity Implements cell viscosity (useful in fluid flow simulations).

Table 1. Selected CompuCell3D plug-ins.

54 COMPUTING IN SCIENCE & ENGINEERING

The CompuCellPlayer can also run in noninter-
active or silent mode, which is important when
users run CompuCell3D on clusters accessed
through queuing systems that don’t run interactive
jobs. In this case, users must prepare a screenshot
description text file to tell the CompuCellPlayer
which views to save so it can prepare the screenshot
description file. The user simply switches views and
presses the Camera button on the views that should
be saved. At the end of this step, CompuCellPlayer
stores a screenshot description file that can control
the CompuCellPlayer in noninteractive mode.

Finally, users can serialize the entire simulation to
restart at a later time, possibly with different para-
meters. This particular feature makes it possible to
equilibrate cellular patterns before running a simu-
lation, from a more physically relevant initial state.

Applications
A flexible morphogenesis PSE should be able to
represent multiple types of simulations, organisms,
chemical fields, reaction-diffusion PDEs, cell types,
and so on. We can demonstrate CompuCell3D’s
flexibility by illustrating three biologically relevant
test simulations. We provide XML for each exam-
ple at www.nd.edu/~lcls/compucell/examples.htm.

Cell-Sorting Simulation
Embryonic cells of two different types, when disso-
ciated, randomly mixed, and reaggregated, can
spontaneously sort to reestablish coherent homo-
geneous tissues. Both complete and partial cell sort-
ing (in which large clusters of one cell type are
engulfed or surrounded by a continuous layer of
cells of the other cell type) occur during in vitro ex-
periments via embryonic cells. Cell sorting is a key
step in regenerating a normal animal from aggre-
gates of dissociated cells of adult hydra5 and in es-
tablishing spatial relationships among cells during

embryogenesis in all species. Biologically, cell sort-
ing is thought to result from adhesivity differences.6

CompuCell3D lets researchers study how differen-
tial cell adhesion drives cells to produce different
patterns. Even cell sorting between two different
initially randomly distributed cell types (as in Fig-
ure 3a), for example, results from having one cell
type stick strongly to itself (as in Figure 3b). If cells
stick most strongly to cells of the opposite type, a
checkerboard pattern forms (see Figure 3c).

The XML code in Figure 4 shows a Compu-
Cell3D configuration file for cell sorting. Chang-
ing the adhesivity values in the Contact plug-in
produces different patterns.

Chondrogenic Condensation Simulation
Following other research,4,7 we can model the spa-
tiotemporal patterning of cells during cartilage
formation (called chondrogenesis) in a growing em-
bryonic chicken limb. We use an initially uniform
distribution of cubic cells and superimpose a
chemoattractant, which we identify with trans-
forming growth factor-beta (TGF-�), a molecule
that acts as an activator in pattern formation.

We implement cell differentiation as a cell type
map (CTM), an automaton consisting of a set of
cell types and rules for type transitions. As an
example, we can illustrate the CTM other re-
searchers4 used in their avian limb-bud growth
model in Biologo, employing two different types of
cells: noncondensing and condensing, with the lat-
ter much more adhesive than the former. A high
concentration of an activator chemical (above a
threshold) stimulates a type change from noncon-
densing to condensing, and a low concentration
stimulates the reverse transition, as in Figure 5. All
CTMs define a medium cell type to represent the
ECM; Figure 6a defines this CTM using Biologo.
The useplugin tag includes the LimbChemical
effective energy, enabling access to its inputs and
fields using the “.” operator. In this case, we refer-
ence the LimbChemical.activator field and the
LimbChemical.Threshold. The CTM specifies
each cell type and includes an updatecelltypes
module to specify the conditions for cell differen-
tiation to this type. Figure 6b instantiates this
CTM in the CompuCell3D configuration file.

Building on this approach, we can also use Biol-
ogo to add a CPM effective energy term or Hamil-
tonian to simulate haptotaxis, which depends on
two superimposed chemical fields in other re-
search.4 The first represents TGF-�, which in-
duces an inhibitor that acts laterally to the
condensations, thus generating the stripe-like pat-
terns observed in avian limb chondrogenesis. We

(a) (b) (c)

Figure 3. Cell sorting. Starting from (a) a randomly mixed two-cell-
type aggregate, we arrive at different final state patterns for
different cell-cell adhesivity settings. (b) Cells adhere to other cells
of the same type, with the more adhesive cell type (red) clustering
at the center. (c) A checkerboard pattern forms due to preferential
adhesion between cells of different types.

JULY/AUGUST 2007 55

populate the TGF-� with a reaction-diffusion
equation solver.8 TGF-� then stimulates cells to se-
crete an adhesive glycoprotein—called fibronectin
(the second field)—which locally traps cells in clus-
ters by haptotaxis in a process known as mesenchy-
mal condensation. The haptotaxis effective energy
plug-in implements Equation 2 for the fibronectin
concentration C:

. (2)

Biologically, only the active zone cells exposed to
a high activator concentration can produce fi-
bronectin. We add this functionality through the
Biologo Hamiltonian in Figure 7a. The user spec-
ifies the value of an activator threshold that, if ex-
ceeded, stimulates fibronectin secretion, the scaling
factor � from Equation 2, and the rate of secretion.
The ConcentrationFile is a binary file of float-
ing-point values populating the activator chemical
field, with x as the innermost loop. Figure 7b is a
CompuCell3D configuration file snippet that adds
the customized haptotaxis extension to a simula-
tion, thereby specifying all input values. The
Hamiltonian step module specifies the rates of

chemical secretion and resorption, modifying its
associated field. In this case, we secrete a quantity

FibroRate into fibronectin if the corresponding
activator concentration is above or equal to
Threshold. The effective energy equation sums
over all lattice locations pt (predefined), but only
condensing cells contribute.

The effective energy includes cell–cell adhesion,
volume and surface area constraints, and haptotaxis
from Biologo. CompuCell3D can also simulate
chicken-limb formation on an irregular domain or
on a growing regular domain. Figure 8 shows the
results of this latter simulation.

E C tChemical = ∑μσ () (,)x
x

x

<CompuCell3D>

<Potts>

<Dimensions x=“100” y=“100” z=“100” />

<Steps>500</Steps>

<Temperature>5</Temperature>

<Flip2DimRatio>1</Flip2DimRatio>

<FlipNeighborMaxDistance>1.75

</ FlipNeighborMaxDistance>

</Potts>

<Plugin Name=“Volume”>

<TargetVolume>20</TargetVolume>

<LambdaVolume>1.0</LambdaVolume>

</Plugin>

<Plugin Name=“Surface”>

<TargetSurface>16</TargetSurface>

<LambdaSurface>0.5</LambdaSurface>

</Plugin>

<Plugin Name=“CellType”>

<CellType TypeName=“Medium” TypeId=“0” />

<CellType TypeName=“Condensing” TypeId=“1” />

<CellType TypeName=“NonCondensing” TypeId=“2” />

</Plugin>

<Plugin Name=“Contact”>

<Energy Type1=“Medium” Type2=“Medium”>0</Energy>

<Energy Type1=“NonCondensing”

Type2=“NonCondensing”>14</Energy>

<Energy Type1=“Condensing”

Type2=“Condensing”>2</Energy>

<Energy Type1=“NonCondensing”

Type2=“Condensing”>11</Energy>

<Energy Type1=“NonCondensing”

Type2=“Medium”>16</Energy>

<Energy Type1=“Condensing”

Type2=“Medium”>16</Energy>

</Plugin>

<Plugin Name=“CenterOfMass” />

</CompuCell3D>

Figure 4. CompuCell3D configuration file for cell sorting. Different adhesivity settings are shown in the Contact plug-in;
other plug-ins for center of mass, volume, and surface area calculations are also displayed along with CPM parameters at
the top.

C (x, y, z) > AT

C (x, y, z) < AT

Noncondensing Condensing

C (x, y, z) ≤ AT C (x, y, z) ≥ AT

Figure 5. CTM for an avian limb simulation. A noncondensing cell
becomes condensing when exposed to an activator concentration
C(x, y, z) above a threshold, and a condensing cell becomes
noncondensing when exposed to an activator concentration below
a threshold.

56 COMPUTING IN SCIENCE & ENGINEERING

Simulating in vitro Capillary Development
Merks and his colleagues9 developed an in silico
model of the widely used human umbilical vascu-
lar endothelial cells (HUVEC) in vitro for blood
vessel growth (called angiogenesis). During the first
steps of embryonic vascular development, en-
dothelial cells (ECs, the cells that line the inner
walls of blood vessels) organize into polygonal pat-
terns of cell cords. Existing vessels subsequently
sprout and split, forming new blood vessels and re-
modeling the initial vascular network. Merks and
his colleagues assumed that ECs secrete a mor-
phogen that the ECM inactivates, extend filopodia
up the morphogen gradients, and elongate in re-
sponse to angiogenic growth factors.

Biologo uses PDEs to model the reaction and dif-
fusion of secreted, diffusible, and nondiffusible mol-
ecules.8 Such cellular models typically represent
cells’ production of and responses to diffusing mol-
ecules as a set of PDEs. Nian Li and his colleagues10

demonstrated convergence and stability of the finite
difference method for solving reaction-diffusion
equations. Users can write a set of PDEs in Biologo
to generate a 2D finite difference solver plug-in that
a CompuCell3D configuration file can subsequently
dynamically load, populating an associated chemical
field for use by other CompuCell3D plug-ins. For
our experiments, we modeled in vitro capillary de-
velopment, duplicating the results of another model9

and by analogy to the Gamba-Serini PDE model11

simulating the chemoattractant c’s reaction-diffusion
in Equation 3:

, (3)

where � is the rate at which cells secrete the
chemoattractant, � is the rate of chemoattractant
resorption in ECM, D is the diffusion constant of
the chemoattractant in both cells and ECM, and

is 1 for cells and 0 for the medium. Hence, c
diffuses and decays in the extracellular matrix.

This equation models a chemoattractant’s diffu-
sion and breakdown and thus doesn’t au-
tonomously drive cell patterning. Patterns form
due to the close interplay between cell migration
and chemoattractant secretion and decay. Figure 9a
shows this vasculogenesis model in Biologo. Dif-
fEq tags represent each PDE, and each tag evolves
one field with time. An equation specifies each
unique term separately. Kronecker is equivalent to
� (�(x, y, z), 0), which is 1 if point (x, y, z) corre-
sponds to a medium point and 0 if (x, y, z) lies in a
biological cell; Laplacian computes the Laplacian
of the passed field. Each solver predefines user in-
puts for the time step and number of steps in the fi-
nite difference algorithm. These parameters, along
with �, �, and D, are instantiated in the Compu-
Cell3D configuration file as shown in Figure 9b,
which also shows the instantiation of a chemo-
taxis plug-in using the field c from the Gamba-
Serini PDE solver. Numbers of PDE steps per
CPM step, the time step, and the space step for the
finite difference method are also specified.

For more complete 3D PDE solving ability, an
alternative is to embed Python code and use FiPy
(www.ctcms.nist.gov/fipy/) calls within Biologo be-
tween Python tags. We use source and transient
diffusion terms from the FiPy libraries to set up the
equivalent version of Gamba-Serini PDEs in Fig-
ure 10. This also provides the ability to discretize

δσ x ,0

∂
∂

= − − + ∇c
t

c D c
x x

αδ δ εσ σ, ,()0 0
21

<cellmodel name=“Chick”>

<!– We include this plugin to access its inputs

and fields. –>

<useplugin name=“LimbChemical” />

<!– NonCondensing cell type (nonadhesive). –>

<celltype name=“NonCondensing”>

<updatecelltypes>

<changeif currenttype=“ Condensing”

condition=“LimbChemical.activator

[pt.x][pt.y][pt.z] less

LimbChemical.Threshold” />

</updatecelltypes>

</celltype>

<!– Condensing cell type (adhesive). –>

<celltype name=“Condensing”>

<updatecelltypes>

<changeif currenttype=“ NonCondensing”

condition=“LimbChemical.activator

[pt.x][pt.y][pt.z] greater

LimbChemical.Threshold” />

</updatecelltypes>

</celltype>

</cellmodel>
(a)

<!– Plugin instantiation. –>

<Plugin Name=“Chick” />
(b)

Figure 6. Adding a CTM to CompuCell3D with BioLogo. (a) CTM for a chondrogenic condensation simulation with two cell
types, condensing and noncondensing. (b) Instantiation of the avian limb CTM in the CompuCell3D configuration file.

JULY/AUGUST 2007 57

multiple fields differently in time by passing dif-
ferent dt values to solve(). Once again, we refer-
ence Kronecker. Embedded FiPy offers a trade-off
in representative power for performance, yielding
roughly a six-fold performance slowdown versus
Biologo’s generated C++.

Figure 11 shows a CompuCell3D version of the
in vitro capillary development model. A surface
tension � = JCell,Medium – JCell,Cell/2 determines
whether cells cohere (� > 0) or dissociate (� < 0).
Figure 11a includes a cell-length constraint that
causes cells to elongate, which is represented with
an extra term in the CPM Hamiltonian that’s qua-
dratically proportional to the deviation between a
cell’s current and target length L. In this figure, L
= 30, which results in a connected network with
thinner chords. We also implemented a constraint9

to preserve local cell connectivity and removed cell
adhesion by setting JCell,Cell = 60 and JCell,Medium =
30, yielding � = 0. As long as elongation is present,
the HUVEC forms networks even in the absence
of adhesion. Figure 11b shows the chemical field
from Equation 3 added through Figure 9a, now
recognized and visualized through the Compu-

CellPlayer, along with superimposed cell bound-
aries. Finally, Figure 11c enforces rounded cells (L
= 10) and shows that a network doesn’t form due
to the lack of cell stretching, in accordance with
other results.9

Performance
Let’s now examine how CompuCell3D perfor-
mance scales with cell density and lattice size (in
voxels) for a cell-sorting simulation run for 500
MCS. Figure 12a uses a constant 50 � 50 � 50 lat-
tice size, whereas Figure 12b uses a constant cell
density of 27 percent. We conducted our tests on
an HP workstation with an Intel Pentium IV 3.2-
GHz processor and 1 Gbyte of memory that ran
Red Hat Linux 9.0, kernel 2.4.21. The C++ com-
piler was g++ version 3.2.3. As we would expect, ex-
ecution time scales linearly with lattice size at
constant density. In the future, we hope to improve
scaling with cell density in two ways: by recogniz-
ing sparse areas of the lattice with the help of so-
phisticated data structures (to keep track of cellular
positions and avoid neutral or ineffective flip at-
tempts) or by implementing the random walker al-

<Hamiltonian name=“LimbChemical”>

<!– Inputs to be specified by the user –>

<Input name=“Threshold” type=“double” />

<Input name=“Mu” type=“int” />

<Input name=“FibroRate” type=“double” />

<Input name=“ConcentrationFile” type=“file” />

<!– Superimposed chemical fields –>

<Field name=“fibronectin” type=“float” />

<Field name=“activator” type=“float”

filename=“ConcentrationFile” />

<!– Cells secrete fibronectin at a user-specified

rate. –>

<!– They are stimulated by a high activator

concentration. –>

<Step>

<secrete field=“fibronectin” location=“pt”

amount=“FibroRate”

condition=“activator[pt.x][pt.y][pt.z]

greaterequal Threshold” />

</Step>

<!– CPM energy contribution. –>

<!– Dependent upon fibronectin concentration. –>

<Equation>

<pixelsum exp=“Mu*fibronectin[pt.x][pt.y][pt.z]”

condition=“cell.type equal ‘Condensing’“ />

</Equation>

</Hamiltonian>
(a)

<!– Plugin instantiation. –>

<!– Input values specified here. –>

<Plugin Name=“LimbChemical”>

<Threshold>0.7</Threshold>

<Mu>-10</Mu>

<FibroRate>0.01</FibroRate>

<ConcentrationFile>bnewSys123_71x31x281.dat

</ConcentrationFile>

</Plugin>
(b)

Figure 7. Adding an effective energy term to CompuCell3D with BioLogo. (a) LimbChemical effective energy or
Hamiltonian for the avian limb-bud growth simulation. The effective energy is associated with two chemical fields:
activator (populated through a ConcentrationFile) and fibronectin (populated by cell secretion and resorption)
superimposed on the CPM lattice. (b) Sample instantiation of the Biologo-generated LimbChemical plug-in in a
CompuCell3D configuration file.

58 COMPUTING IN SCIENCE & ENGINEERING

gorithm,12 which restricts flip attempts to bound-
ary lattice locations.

I n our next release and upgrade of Compu-
Cell3D, we will add a layer to the PSE that
will implement Python scripting as another
option for user interaction. This layer will

balance interactive power with the abstraction
level—the interface will be more complex than Bi-
ologo, but a larger set of behaviors will be mo-
difiable. We’ll also wrap C++ libraries from
CompuCell3D with SWIG, a useful tool for con-
verting C++ functionality into importable Python
modules, and group importable modules into pack-
ages that the user can subsequently import as high-
level functions to invoke back-end functionality. A
prototype version is currently available at www.
nd.edu/~lcls/compucell/downloads.htm. Finally,
we plan to incorporate a parallel CPM implemen-
tation into the PSE using domain decomposition
to accommodate larger simulations and to make a
Windows-compatible binary available.

Although we focused on biological applications
in this text, the benefits of PSEs have been proven
to extend to other domains as well, such as multi-
way data modeling13 and workflow setup for grid
environments.14 Another classic example is Inter-
active ELLPACK,15 which extended the ELL-
PACK language to provide a graphical interactive
environment for PDE solving. Despite their wide

range of applications, these PSEs succeed in a sim-
ilar fashion by removing the burden of low-level
modular architectural concerns off the users, free-
ing them up to operate at a level of abstraction suit-
able for their expertise.

References
1. E. Gamma et al., Design Patterns: Elements of Reusable Object-Ori-

ented Software, Addison-Wesley, 1995.

2. R.M.H. Merks et al., “Problem-Solving Environments for Biolog-
ical Morphogenesis,” Computing in Science & Eng., vol. 8, no. 1,
2006, pp. 61–72.

3. R.M.H. Merks and J.A. Glazier, “A Cell-Centered Approach to De-
velopmental Biology,” Physica A, vol. 352, no. 1, 2005, pp.
113–130.

4. T. Cickovski et al., “A Framework for Three-Dimensional Simula-
tion of Morphogenesis,” IEEE/ACM Trans. Computational Biology
and Bioinformatics, vol. 2, no. 4, 2005, pp. 273–288.

5. F. Graner and J.A. Glazier, “Simulation of Biological Cell Sorting
Using a Two-Dimensional Extended Potts Model,” Physical Rev.
Letters, vol. 69, no. 13, 1992, pp. 2013–2016.

6. J.A. Glazier and F. Graner, “Simulation of the Differential Adhe-
sion Driven Rearrangement of Biological Cells,” Physical Rev. E,
vol. 47, no. 3, 1993, pp. 2128–2154.

7. R. Chaturvedi et al., “On Multiscale Approaches to 3-Dimen-
sional Modeling of Morphogenesis,” J. Royal Soc. Interface, vol.
2, no. 3, 2005, pp. 237–253.

8. H.G.E. Hentschel et al., “Dynamical Mechanisms for Skeletal Pat-
tern Formation in the Vertebrate Limb,” Proc. Royal Soc. London
B, vol. 271, no. 1549, 2004, pp. 1713–1722.

9. R.M.H. Merks et al., “Cell Elongation Is Key to in silico Replica-
tion of in vitro Vasculogenesis and Subsequent Remodeling,” De-
velopmental Biology, vol. 289, no. 1, 2006, pp. 44–54.

10. N. Li, J. Steiner, and S. Tang, “Convergence and Stability Analy-
sis of an Explicit Finite Difference Method for 2-Dimensional Re-
action-Diffusion Equations,” J. Australian Mathematical Soc. B, vol.
36, no. 2, 1994, pp. 234–241.

11. A. Gamba et al., “Percolation Morphogenesis and Burgers Dy-
namics in Blood Vessel Formation,” Physical Rev. Letters, vol. 90,
no. 11, 2003, p. 118101.

12. E. Gusatto et al., “An Efficient Parallel Algorithm to Evolve Simu-
lations of the Cellular Potts Model,” Parallel Processing Letters, vol.
15, no. 1, 2005, pp. 199–208.

13. I.H.M. van Stokkum, and H.E. Bal, “A Problem Solving Environ-
ment for Interactive Modeling of Multiway Data,” Concurrency
and Computation: Practice and Experience, vol. 18, no. 2, 2005,
pp. 263–269.

14. N. Currle-Linde et al., “Science Experimental Grid Laboratory
(SEGL) Dynamical Parameter Study in Distributed Systems,” Proc.
Int’l Conf. ParCo 2005, Central Institute for Applied Mathemat-
ics, 2005, pp. 49–56.

15. W.R. Dyksen, and C.J. Ribbens, “Interactive ELLPACK, An Inter-
active Problem Solving Environment for Elliptic Partial Differen-
tial Equations,” ACM Trans. Mathematical Software, vol. 13, no.
2, 1987, pp. 113–132.

Trevor Cickovski is a graduate student and research as-
sistant in the Department of Computer Science and Engi-
neering at the University of Notre Dame. His research lies
in morphogenesis modeling, molecular modeling, and do-
main-specific language design. Cickovski has an MS in
computer science and engineering from the University of
Notre Dame. He is a member of the ACM and the IEEE.

Figure 8. Avian-limb development, visualizing
only condensing cells for clarity. The limb forms at
the center of a 3D box of cells and is surrounded
by mostly noncondensing cells. Formation begins
with the humerus after 2,300 Monte Carlo steps
(MCSs), followed by the radius and ulna after
3,250 MCS, and finally digits after 4,250 MCS.

JULY/AUGUST 2007 59

Contact him at tcickovs@nd.edu.

Kedar Aras is an engineer in the corporate innovation
technology division at Whirlpool. His research interests are
in computational biology and bioinformatics, software en-
gineering, and systems neuroscience and neuroengineer-
ing. Kedar has an MS in computer science from the
University of Notre Dame. Contact him at kedar.
aras@gmail.com.

Maciej Swat is a research associate in the Biocomplexity

Institute at Indiana University. His research lies in com-
putational biophysics and scientific problem solving envi-
ronments. Swat has a PhD in physics from Indiana
University. He is a member of the Biophysical Society. Con-
tact him at mswat@indiana.edu.

Roeland M.H. Merks heads the plant systems modeling
group in the plant systems biology department at the
Flanders Institute of Biotechnology and Ghent University
Belgium. His research interest is in biological morphogen-
esis modeling, including cell-based modeling of plant de-

<!– This program generates a PDE solver using the

finite difference method. –>

<PDESolver name=“GambaSerini”>

<!– User-defined inputs. –>

<Input name=“alpha” type=“float” />

<Input name=“epsilon” type=“float” />

<Input name=“DiffConst” type=“float” />

<!– Field to evolve. –>

<Field name=“c” type=“float” />

<!– PDE description. –>

<DiffEq fieldname=“c”>

<Term exp=“(1-Kronecker)*alpha -

epsilon*c*Kronecker +

DiffConst*Laplacian(c)”

condition=“true” />

</DiffEq>

</PDESolver>
(a)

<!– New plugin instantiation. –>

<Plugin name=“GambaSerini”>

<Step> 20 </Step>

<DT>.2 </DT>

<DX> 1 </DX>

<alpha> 0.01 </alpha>

<epsilon> 0.05 </epsilon>

<DiffConst> 1 </DiffConst>

</Plugin>

<!– Instantiating Chemotaxis. –>

<Plugin name=“Chemotaxis”>

<Lambda> 2000 </Lambda>

<ChemicalField name=“GambaSerini” >

c

</ChemicalField>

</Plugin>
(b)

Figure 9. Adding a PDE solver to CompuCell3D with BioLogo. (a) A hybrid model of angiogenesis,9 derived from the
Gamba-Serini PDEs,11 implemented in Biologo as an evolver of chemical fields. (b) Instantiation of this solver in the
CompuCell3D configuration file. The CompuCell3D chemotaxis plug-in also accepts ChemotaxisByType tags with
attributes for cell type and associated Lambda values.

<PDESolver name=“GambaSerini”>

<!– User-defined inputs. –>

<Input name=“alpha” type=“float” />

<Input name=“epsilon” type=“float” />

<Input name=“DiffConst” type=“float” />

<!– Field to evolve. –>

<Field name=“c” type=“float” />

<!– PDE description. –>

<Python>

diffterm = ExplicitDiffusionTerm

(coeff = DiffConst)

secretion = alpha*(1-kronecker)

resorption = ImplicitSourceTerm

(coeff = epsilon*kronecker)

eq = TransientTerm() == secretion - resorption

+ diffterm

eq.solve(c, dt=dt)

</Python>

</PDESolver>

Figure 10. Python. This Biologo representation of the same PDE model in Figure 9a uses embedded FiPy.

60 COMPUTING IN SCIENCE & ENGINEERING

velopment, coral growth, and vascular development in
mammals. Merks has a PhD in computational science
from the University of Amsterdam. He is a member of the
American Physical Society and of the European Society for
Mathematical and Theoretical Biology. Contact him via
www.roelandmerks.nl.

Tilmann Glimm is an assistant professor of mathematics
at Western Washington University. His research interests
include analytical and numerical methods in nonlinear
partial differential equations with applications in devel-
opmental biology. Glimm has a PhD in mathematics from
Emory. He is a member of SIAM and the American Math-
ematical Society. Contact him at glimmt@wwu.edu.

H. George E. Hentschel is a professor of physics at Emory
University. His research interests include nonequilibrium
statistical mechanics, computational biophysics, infor-
mation processing, and dynamical systems. Hentschel has
a PhD in theoretical chemistry from Cambridge. He is a
fellow of the Cambridge Philosophical Society and a mem-
ber of the American Physical Society and the American As-

sociation for the Advancement of Science. Contact him at
phshgeh@physics.emory.edu.

Mark S. Alber is the Endowed Chair in Applied Mathe-
matics and a professor of physics at the University of
Notre Dame, where he also serves as director of the Cen-
ter for the Study of Biocomplexity. His research interests
are in mathematical and computational biology. Alber has
a PhD in mathematics from the University of Pennsylva-
nia. Contact him at malber@nd.edu.

James A. Glazier is a professor of physics, adjunct profes-
sor of informatics and biology, and director of the Bio-
complexity Institute at Indiana University; president of
SpheroSense Technologies; and vice chair of the American
Physical Society’s Division of Biological Physics. His re-
search interests include both experimental and computa-
tional developmental biology, computational modeling,
biomedical problems, and liquid foams. Glazier has a PhD
in physics from the University of Chicago. He is a fellow of
the Institute of Physics (London) and the American Phys-
ical Society. Contact him at glazier@indiana.edu.

Stuart A. Newman is a professor of cell biology and
anatomy at New York Medical College. His research in-
terests include the development of the vertebrate limb and
the origination and evolution of animal form. Newman
has a PhD in chemical physics from the University of
Chicago. He coauthored Biological Physics of the Devel-
oping Embryo (Cambridge, 2005). Contact him at
stuart_newman@nymc.edu.

Jesus A. Izaguirre is an associate professor of computer
science and engineering at the University of Notre Dame.
His research interests include molecular dynamics, Monte
Carlo methods, cellular automata, and the analysis of bi-
ological networks. Izaguirre has a PhD in computer sci-
ence from the University of Illinois at Urbana-Champaign.
He is a member of the IEEE and the IEEE Computer Soci-
ety. Contact him at izaguirr@cse.nd.edu.

(a) (b) (c)

Figure 11. Output of in vitro capillary development simulations. (a)
Elongated cells (L = 30) in the absence of cell adhesion, showing the
capillary networks found in other research.9 (b) Chemical
concentration from the same simulation, visualizing the field added
through Biologo. (c) Vascular islands forming due to the
enforcement of rounded cells (L = 10).

500
450
400
350
300
250
200
150
100

50W
al

l c
lo

ck
 t

im
e

(s
ec

)

Cell density (%)

0 5 10 15 20 25 30 35 40 45

3,500

3,000

2,500

2,000

1,500

1,000

500W
al

l c
lo

ck
 t

im
e

(s
ec

)

Grid volume (pixels)

0 2 4 6 8 10

 x 105(a) (b)

Figure 12. Comparisons of wall clock execution time versus cell
density (constant lattice size of 50 � 50 � 50 voxels) and lattice size
(constant cell density of 27 percent). We ran five simulations for
each test, and show the mean execution time along with error bars
for mean deviation.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

