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Cells of the embryonic vertebrate limb in high-density culture

undergo chondrogenic pattern formation, which results in the for-

mation of regularly-spaced ‘‘islands’’ of cartilage analogous to the

cartilage primordia of the developing limb skeleton. In this article

we describe a discrete, agent-based stochastic model for studying

the behavior of limb bud precartilage mesenchymal cells in vitro.

This model, like an earlier one, employs a biologically motivated

reaction-diffusion process and cell-matrix adhesion as the basis of

self-organizing pattern formation, but constitutes an improvement

in biological fidelity over previous descriptions in that it is multiscale

(i.e., cell and molecular dynamics occur on distinct scales), and the

cells are represented as spatially extended objects. The improved

model reproduces a broader set of results of the micromass culture

system than the previous one and discloses multiple dynamical

regimes that suggest new biological experiments.

INTRODUCTION

Mathematical and computational models have played an increasingly

prominent role in developmental biology in recent years (Forgacs and

Newman 2005). These models serve to provide tests of the plausibility

and robustness of proposed mechanisms of morphogenesis and pattern

formation. Equally importantly, they can suggest new hypotheses and

previously unknown but experimentally testable consequences or

hypotheses from known biological interactions.

Models of biological problems fall into two categories: continuous

models that use families of differential or integro-differential equations

to describe ‘‘fields’’ of interaction, and discrete models in which space,

time or state may be discrete. Models may be deterministic or stochas-

tic. In biological applications, continuous models have been used to

describe oceanic microbial cycles (Belov and Giles 1997), microbial

growth dynamics (Panikov 1995), the spread of species through an

ecosystem (Scott et al. 1995), and biofilm formation (Wanner, 1996).

Discrete models describe individual (microscopic) behaviors. They

are often applied to microscale events where a small number of ele-

ments can have a large (and stochastic) impact on a system. Discrete

methods that have been applied to biological systems include cellular

automata (Ermentrout and Edelstein-Keshet 1993), lattice-gas-based

cellular automata (Alber et al. 2004; Sozinova et al. 2005), the cellular

Potts model (Glazier and Graner 1993), and agent-based modeling

(Walker et al. 2004). The choice of discrete versus continuous models

708 S. CHRISTLEY ET AL.
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depends upon the entities being represented and the level of detail

desired for the interactions between the entities. Parunak et al. (1998),

for example, discuss the criteria for using an agent-based versus an

equation-based model in a case study of a manufacturing supply chain

simulation; while Wilson (1998) contrasts the two types of models for

predator-prey population dynamics.

The developing limbs, or limb buds, of embryos of vertebrate organ-

isms such as chickens or mice, contain an interior population of loosely

packed cells (‘‘mesenchyme’’), enclosed by a thin layer of embryonic

skin, or ectoderm. The precartilage mesenchymal cells undergo a process

of chondrogenic (i.e., cartilage) pattern formation whereby they first

become more tightly packed at discrete sites, forming ‘‘condensations.’’

These precartilage condensations then differentiate into nodules or bars

of cartilage which form the primordia of the developing limb skeleton

(reviewed in Newman 1988). When grown in high density (‘‘micromass’’)

culture, the same limb bud-derived cells undergo pattern formation that

is similar in spatial scale and cellular and molecular mechanisms to that

in the embryonic limb. Theoretical and experimental considerations sug-

gest that in both cases an activator-inhibitor network of diffusible signal

molecules (‘‘morphogens’’) with formal attributes of the Turing insta-

bility (Turing 1952) are responsible for the basic patterning process

(Newman and Frisch 1979; Miura and Shiota 2000a, b; Hentschel et al.

2004; Miura et al. 2006).

Here we describe a discrete, multiscale, agent-based stochastic

model for studying behavior of these cultures which accurately simulates

their formation of patterns of precartilage condensation. We present this

model not only as an example of posthoc analysis of experimental find-

ings, but also as a tool for experimental design and hypothesis testing. In

particular, the cellular and molecular features we model (cell movement

and shape change, cell-cell signaling, cell adhesion, among others) are

found in a variety of in vitro systems derived from developmental and can-

cer cell biology. The plausibility and limitations of postulated interac-

tions and mechanisms, for example, reaction-diffusion as the basis for

mesenchymal pattern formation, can be judged in simulations with this

model, the strength of which is the facility with which it can be revised

based on new information and experimental outcome.

In the example presented here, calibration of certain key model

parameters with experimentally determined values obtained in related

or analogous systems leads to the emergence of condensations with

AGENT-BASED SIMULATION FOR CHONDROGENIC PATTERN FORMATION 709
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the same size and spatial distribution as those in cultures of limb bud

precartilage mesenchymal cells. Our simulations have also disclosed

two distinct regimes of dynamical behavior in the reaction-diffusion sys-

tem that provide motivation for new biological experiments to explore

the underlying molecular mechanisms.

The organization of the article is as follows. We initially provide some

biological background regarding chondrogenic pattern formation to

motivate the development of an agent-based model. Following that, we

describe the computational details including the spatial, agent, and mol-

ecular representations, the algorithms and equations used to implement

the model, and the scheduling and integration of all the components.

Next, we calibrate the parameters of the model with known experimental

values. Finally, we provide some simulation results and discuss their impli-

cations for the use of agent-based models for biological development.

Additional results using the model are given in Christley et al. (2007).

BIOLOGICAL BACKGROUND

Skeletal pattern formation in the developing vertebrate limb depends on

interactions of precartilage mesenchymal cells with factors that control

the spatiotemporal differentiation of cartilage. The most basic skeleto-

genic processes involve the spatial separation of precartilage mesen-

chyme into chondrogenic and nonchondrogenic domains. In vitro as

well as in vivo, TGF-bs and other members of this superfamily of mor-

phogens induce precartilage condensation by a process that involves

the upregulation of the secreted extracellular matrix protein, fibronectin.

Mesenchymal cells accumulate at sites of fibronectin deposition due to

increased cell-matrix adhesive interactions and then transiently adhere

directly to one another by virtue of cell-cell adhesion molecules, the

enhanced expression of which are also induced by TGF-b. Cartilage dif-

ferentiation, or chondrogenesis, follows at the sites of condensation

in vitro and in vivo (reviewed in Newman and Müller 2005).

Earlier work has suggested that interactions between diffusible acti-

vators and inhibitors of chondrogenesis can explain the approximately

periodic patterns of chondrogenesis in the developing limb (Newman

and Frisch 1979; Hentschel et al. 2004; Miura et al. 2006) and in micro-

mass cultures (Miura and Shiota 2000a, b; Miura and Maini 2004;

Kiskowski et al. 2004). In particular, the morphogen TGF-b acts as an

activator of precartilage condensation by positively regulating its own

production (Miura and Shiota 2000b), as well as that of fibronectin

710 S. CHRISTLEY ET AL.
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(Leonard et al. 1991; Downie and Newman 1995). The nature of the

lateral inhibitor of condensation is more elusive. Recent work suggests

that it depends both on signaling via fibroblast growth factor receptor

2 (FGFR2) (Moftah et al. 2002) and the juxtacrine (cell-cell contact-

activated) Notch receptor (Fujimaki et al. 2006), both of which appear

on cells at sites of incipient condensation. Here we assume that the exper-

imentally based lateral inhibitory effect is due to a diffusible morphogen,

though other modes of propagation of an inhibitory signal are possible.

COMPUTATIONAL MODEL

In a previous study (Kiskowski et al. 2004), we presented a biological lat-

tice gas model that remains the most successful computational model to

date for pattern formation in the limb cell micromass system. The present

model more closely reflects biological reality than the earlier one in several

important respects. First, the cells in the new model are extended, multi-

pixel objects that can change shape. Adjacent cells are separated by less

than a cell diameter, condense without denuding the regions surrounding

condensation centers, and are not irreversibly trapped once entering a

condensation. Chemical reactions, molecular diffusion, and diffusion of

cells operate on different physical and temporal scales. Finally, key simula-

tion parameters are calibrated to corresponding physical measurements,

where available, including the physical area of a cell, which is equal to

the average surface area of a limb cell in the micromass.

Whereas the model of Kiskowski et al. (2004) was written in Matlab,

the current model was ported from the original Matlab source to the C

programming language for scalability and efficiency of execution, and

then to the Objective-C programming language to take advantage of

object-oriented features. We still use Matlab for visualizing data pro-

duced by simulation runs. The source code is available as free software

from the authors.

In the following sections, we describe the details of our discrete, multi-

scale agent-based stochastic computational model whereby the cells and

molecules are represented as discrete agents that occupy spatial grids of

differing resolution and interact according to a predefined set of rules.

Spatial Model

The spatial environment that cells and molecules occupy is modeled as a

two-dimensional discrete grid. The implementation provides support for

AGENT-BASED SIMULATION FOR CHONDROGENIC PATTERN FORMATION 711
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multiple overlaid grids of various spatial scales. In our current model, we

only employ two scales; one for the cellular level and another finer res-

olution scale for the molecular level. The coarsest resolution spatial scale

(the cellular level for our model) is considered to be the base spatial

scale, and all other grids are an integer ratio size of that base grid. A ratio

size of two corresponds to four times the area resolution for a two-

dimensional grid, so four pixels of the finer resolution grid, so that four

pixels fit into one pixel of the base spatial grid. The base spatial grid can

be defined as a square or rectangular grid of any height and width, and

all of the grids overlay one another and cover the same physical area.

Our model supports both periodic and no-flux boundary conditions.

With periodic boundary conditions, cells or molecules crossing a grid

boundary will immediately appear on the opposite side of the grid, while with

no-flux boundary conditions, the grid boundary acts as a barrier or obstacle

that prevents cells and molecules from moving in that direction. No-flux

boundary conditions can create situations whereby cells or molecules get

stuck in corners or have less possibility of moving away from a boundary.

We have not attempted to adjust this behavior at the boundary because such

physical obstacles can accurately represent features of the physical domain,

i.e., the edge of a cell-culture dish or the epithelial covering of a limb bud.

Agent-Based Cell Representation

Each cell is a discrete agent represented as a set of seven contiguous pixels

operating on the base spatial grid as shown in Figure 1(a). We chose the

simplest multipixel representation of limb mesenchymal cells subject to

the following biological constraints: (i) cells have essentially isotropic

geometry, that is they do not elongate in the direction of migration but

rather probe their environment by extending short randomly oriented

projections; (ii) the cell nucleus is also isotropic but is relatively unchan-

ging in shape and comprises more than half the cell volume; (iii) cells in

fibronectin-rich, condensing areas of the micromass round up such that

their cross-section in the plane of the culture is significantly reduced

(Cui 2005). We maintain four pixels in a two-by-two square (kernel) con-

figuration that represents the portion of the cell that contains the nucleus

and allow the remaining pixels to occupy the border region around the

nucleus. Cells that round up shrink their spatial area to five pixels as

shown in Figure 1(c), the lost pixels moving into a virtual third dimension.

Cell diffusion is implemented as a random walk (see Algorithm 1). If

the cell moves, then all of its seven (or five) pixels move one pixel in a

712 S. CHRISTLEY ET AL.
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given direction. Cells can also fluctuate in shape, yet such fluctuations

maintain a structural representation of the nucleus by preserving intact

a two-by-two square block of pixels (see Algorithm 2). Therefore, shape

fluctuations are restricted to the motion of the three border pixels around

the nucleus which either move to new positions on the border or displace

Figure 1. (a) Three cells on the spatial grid each occupying seven pixels. (b) Cell changes

shape. The region of the cell that contains the nucleus, indicated by the four gray pixels,

is structurally maintained; two border pixels move to new locations (one moving down

and the other moving left), and one border pixel (upper right) displaces a nucleus pixel,

by moving down while the nucleus pixel gets shifted to the right. (c) Cell rounding up on

fibronectin. The surface area with fibronectin is reduced with two border pixels moving into

a quasi third dimension above the cell.

AGENT-BASED SIMULATION FOR CHONDROGENIC PATTERN FORMATION 713
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a nuclear pixel; Figure 1(b) gives examples of both types of fluctuations

for a cell changing shape.

The rates and probability by which cells move and change shape are

parameterized separately from movement of molecules so that they can

be calibrated to the scale of actual biological cells. Unlike the representation

of cells in the cellular Potts model (Glazier and Graner 1993; Chaturvedi

et al. 2005; Merks and Glazier 2005), the properties of the cell are not

described with energy expressions that are minimized as the simulation

executes. Instead each cell is a discrete agent that behaves according to a

predefined set of rules, and model parameters are used to adjust these rules.

Analysis of cell movement and shape within precartilage condensa-

tions (Cui 2005) indicates that cells have a smaller contact area with sub-

stratum close to the condensation center and that the rate of movement

of those cells slightly but significantly increases. We model this behavior

by shrinking the area of cells associated with levels of fibronectin above a

threshold value from seven pixels to five pixels (see Figure 1(c)), and

increasing the rate at which those cells can move and change shape. Like-

wise once a cell ventures onto a fibronectin-rich region, it has the tend-

ency to remain there with a low probability of leaving the condensation.

Algorithm 1 moveWithProbability(p)

If random number < p then

Randomly pick direction (up, down, left, right).

If movement does not overlap another cell then

Move cell.

=� Else: overlap so prevent move, cell maintains current position �=
End if

End if

Algorithm 2 changeShape()

If cell size is 7 pixels then

Randomly pick 3 border pixels.

Else =� cell size is 5 pixels �=
Randomly pick 1 border pixel.

End if

If selected pixels do not overlap another cell then

Set new border pixels for cell.

=� Else: overlap soprevent shape change, cellmaintains current shape �=
End if

714 S. CHRISTLEY ET AL.
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Molecular Model and Reaction-Diffusion Mechanism

The reaction-diffusion mechanism, introduced by Turing (1952) as a

means for producing self-organizing spatial patterns, is based upon the

interaction of slow diffusing, positive feedback activator molecules and

fast diffusing, negative feedback inhibitor molecules. In our model, a dis-

crete number of activator and inhibitor molecules occupy each pixel on

the grid, and each molecule is considered to have a spatial extent of just

one pixel. Each type of molecule has its own spatial grid independent of

the other molecule types, so any number of molecule types can be

defined, each with their own scale relative to the base spatial scale.

We model the reaction dynamics of the activator and inhibitor mole-

cules at each pixel as follows: let Ut and Vt be the concentration of the

activator and inhibitor, respectively, at time t and let /t be an indicator

function for the existence of a cell at a pixel at time t.

DUt ¼ minfMAXU ; ðk1Ut þ BU Þ/t þ k2Vtg ð1Þ

DVt ¼ minfMAXV ; k3Ut/t þ k4Vtg ð2Þ
Equation (1) shows the change over time for each pixel on the grid of the

activator morphogen concentration based upon a proportion (as defined

by chemical reaction rates) of the current activator and inhibitor concen-

trations. Equation (2) shows the corresponding change over time for

each pixel on the grid for the inhibitor morphogen. The activator mor-

phogen is considered to be a positively self-regulating molecule and a

positive regulator of the inhibitor; thus, the chemical rate parameters

k1 and k3 both have positive values. The inhibitor morphogen is con-

sidered a negative regulator of activator that decays over time; thus,

the values of the chemical rate parameters k2 and k4 are both negative.

The change of activator and inhibitor morphogens is calculated for

each pixel on the grid for each time step of the simulation, and the con-

centrations of the two morphogens are updated at each pixel.

Utþ1 ¼ maxf0;Ut þ roundðDUtÞg;

Vtþ1 ¼ maxf0;Vt þ roundðDVtÞg:
In keeping with the biology, we consider cells to respond to low concen-

trations of morphogens and therefore represent morphogen molecules as

discrete entities. Consequently, the morphogen concentrations (Ut, Vt)

are whole numbers, and changes in the concentrations at a time step

AGENT-BASED SIMULATION FOR CHONDROGENIC PATTERN FORMATION 715
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are rounded to the nearest integer and prevented from becoming

negative. Nonetheless, we treat the chemical rate parameters (k1, k2,

k3, k4) for the two morphogens as averages of the reaction rates and

allow them to assume real number values.

In our model, production of the activator and inhibitor molecules, as

represented by the k1 and k3 parameters, can only occur in the presence

of a cell. In contrast, the decay of activator and inhibitor, as represented

by the k2 and k4 parameters, are considered to occur independently of

cell presence. Cells are initially randomly distributed on the grid, and

secrete a small basal amount (BU) of activator morphogen, which pro-

vides the initial concentration of activator; inhibitor concentration starts

at zero.

In any physicochemical reaction, there are limitations on how much

reagent a single cell can realistically produce during any period of time.

For this reason, our model provides separate parameters (MAXU ,

MAXV) for the maximum amount of activator and inhibitor that can

be produced during a single reaction step. The maxima are imposed

on individual pixels of the molecular grid rather than across the entire

cell to reflect the polarization of limb mesenchymal cells (Holmes and

Trelstad 1980). This allows for small morphogen gradients to be present

across the spatial extent of an individual cell through spatially polarized

secretion of morphogens. The peaks of activator concentration pro-

duced by the reaction-diffusion dynamics define a large prepattern

equal in spatial area to the fibronectin-rich patches, containing around

fifty cells within a single patch, so polarization plays a role for the cells

on the border region of the patch; while cells in the patch interior

perceive a relatively constant morphogen concentration across their

entire spatial extent.

Molecular diffusion from any pixel can occur randomly toward any of

the four neighboring pixels (up, down, left, right). The diffusion rate (DU,

DV) is scaled into a probability factor 0 < p < 1 and a time step n such

that D ¼ pn. The probability determines the chance that a molecule will

diffuse, and the time step indicates how many opportunities a molecule

has to diffuse for a single simulation iteration. If the molecule diffuses,

then one of the four neighboring pixels is picked with equal probability.

The chemical reaction operates at a much slower rate than molecular dif-

fusion, so the time scales are separated, with diffusion calculated at a

small time step and the reaction calculated at a longer time step.

Algorithm 3 shows how the diffusion is performed at a finer time scale.

716 S. CHRISTLEY ET AL.
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Fibronectin Production

Fibronectin is a nondiffusing, extracellular matrix molecule whose spa-

tial distribution forms the template for precartilage condensations. As

the concentration levels of the activator morphogen increase in the pres-

ence of a cell, that cell produces fibronectin mRNA which can then be

translated into fibronectin protein molecules and secreted. We

implement a simple threshold-sensing mechanism such that once the

activator concentration exceeds the threshold value in the spatial pres-

ence of a cell, the cell differentiates into a fibronectin-producing cell.

We separate the trigger for cell differentiation from the actual production

of fibronectin by the cell to emulate delays seen in experiments.

When a cell produces fibronectin, a single multimolecular unit is

secreted with random probability for each of the pixels on the molecular

grid occupied by the cell, and each molecule is allowed to perform an

initial small diffusion of at most one pixel (Kiskowski et al. 2004).

Production of fibronectin molecules continues until a maximum concen-

tration level is reached at a pixel, although cells may still continue to

produce fibronectin on pixels that have not yet reach the maximum.

The production rate of fibronectin, the duration of such production,

and the maximum amount of fibronectin allowed per pixel, can be

adjusted with model parameters.

Main Simulation

All of the various pieces including the cellular dynamics, the molecular

dynamics, and fibronectin production can be brought together into the

complete simulation code as shown in Algorithm 4. The scheduling of

cell actions like movement and shape change is performed in an asyn-

chronous manner and in random agent order. Molecular diffusion and

chemical reaction is performed in a synchronous manner for the com-

plete molecular grid. This is done in the normal way by utilizing a tem-

porary matrix for holding the intermediate calculations, then that

Algorithm 3 calculateReactionDiffusion()

Calculate chemical reaction for each pixel on grid.

For i ¼ 1 to n do

Calculate activator and inhibitor diffusion for each pixel on grid.

End for

AGENT-BASED SIMULATION FOR CHONDROGENIC PATTERN FORMATION 717
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temporary matrix is copied to the molecular grid thus updating the whole

grid in one step. Fibronectin production can be performed either asyn-

chronously or synchronously because the calculation is not dependent

upon neighboring cell states, so we perform the calculation synchro-

nously, which is slightly more efficient.

MODEL CALIBRATION

In attempting to calibrate our model parameters with known empirical

parameters our objective is to correlate the in silico spatial and temporal

patterns with in vitro experiments. For spatial patterns, we consider the

size, shape, and distribution of the fibronectin-rich spatial domains.

For temporal patterns, we consider the reaction rates of activator and

inhibitor production, the diffusion rates of both cells and molecules,

the onset of fibronectin production, the production rate of fibronectin,

and the fluctuations of shape and movement of cells on fibronectin.

The actual value for the set of key parameters used in the simulation

and their corresponding physical measurements, if known, are shown

in Table 1.

Diffusion Rates

Diffusion rates for the activator and inhibitor play a vital role in defining

the wavelength of the Turing patterns produced by the reaction-diffusion

dynamics that ultimately determine the size and distribution of the

fibronectin-rich patches. Lander and coworkers calculate that the effec-

tive diffusion coefficient for a molecule the size and shape of the

Algorithm 4 Main Simulation

For each simulation iteration do

Generate randomized list, R, of agents

For each agent in R do

moveWithProbability(p)

changeShape()

End for

calculateReactionDiffusion()

Determine if any cells have reached threshold for differentiation.

Calculate fibronectin production for each differentiated cell.

End for

718 S. CHRISTLEY ET AL.
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morphogen Decapentaplegic (Dpp) to be 10 mm2=sec (Lander et al.

2002). Since TGF-b, which we assume to be our activator morphogen

based upon cell-culture experiments (Leonard et al. 1991; Miura and

Shiota 2000b), is a morphogen of the same molecular class as Dpp, we

take the diffusion coefficient of Dpp to be our activator diffusion rate.

The inhibitor morphogen, whose identity is unknown, must spread at a

faster rate than the activator morphogen for patterns to be produced.

We have found that an inhibitor diffusion rate approximately four times

faster than that of the activator is sufficient to produce stable patterns.

The diffusion rate for cells is considerably slower than for the

activator and inhibitor molecules. Cui (2005) used phase-contrast

microscopy and video-based cell tracking to measure the movements

of cells during development of chicken limb precartilage mesenchyme

over the time period of condensation formation. He determined an aver-

age cell diffusion coefficient of 0.506 mm2=min, and his data are consist-

ent with cells moving slightly faster in condensations (see also Ede et al.

1977). We implement this in a qualitative fashion by making cells

associated with fibronectin diffuse faster than cells not associated with

fibronectin (see Table 1).

Table 1. Calibrated simulation parameters to known physical values

Parameter Physical value Simulation value

Cell diameter=area 15 mm=177mm2 7 pixels

Cell spatial grid 1.4� 1.0mm 280� 200 pixels

Molecular spatial grid 560� 400 pixels

Spatial ratio cells:molecules 10000:1 28 pixels:1 pixel

Simulation Temporal scale 17.07 sec 1 iteration

Reaction Temporal scale 17.07 sec 1 reaction

Diffusion Temporal scale (n ¼ 200) 85.3msec 1 diffusion step

Basal activator production (BU) Unknown 28

Activator self-regulation (k1) Unknown 0.3356

Activator regulation of inhibitor k3 Unknown 0.16

Inhibitor regulation of activator k2 Unknown �1.1

Inhibitor decay (k4) Unknown �0.4615

Maximum activator produced (MAXU) Unknown 8000

Maximum inhibitor produced (MAXV) Unknown 8000

Activator diffusion rate (DU) 10 mm2=sec 27 pixels=iteration

Inhibitor diffusion rate (DV) Unknown 108 pixels=iteration

Cell diffusion rate 0.42 mm2=min 1 pixel=60 iterations

Cell diffusion rate on fibronectin 0.62 mm2=min 1 pixel=40 iterations

AGENT-BASED SIMULATION FOR CHONDROGENIC PATTERN FORMATION 719
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Reaction Rates

Parameters for the reaction rates must fall within an appropriate ‘‘mor-

phogenetic’’ region of parameter space in order for Turing-type patterns

to be produced. Within this morphogenetic region, two types of behavior

are observed for the morphogen concentrations: steady-state equilibrium

with stable patterns and oscillatory behavior with transient patterns. The

oscillatory behavior was induced by imposing the maxima (MAXU,

MAXV) on production. Otherwise a steady-state would be attained, but

at an unrealistically high concentration level of activator. As these reac-

tion rates are unknown, we take the approach of choosing parameters

that correspond to our understanding of the qualitative behavior of cells

in culture.

Onset and Rate of Fibronectin Production

It was previously shown that brief, transient exposure of precartilage

mesenchymal cells to exogenous TGF-b early in the culture period is suf-

ficient to induce the production of precocious condensations a day later

(Leonard et al. 1991). The cells responded to TGF-b by immediately

producing elevated levels of fibronectin mRNA even though secretion

of the fibronectin protein molecule in the discrete condensation pattern

did not occur until the next day. In another study, the expression of

FGFR2 protein (the mediator of FGF induction of the inhibitor at sites

of incipient condensation) was found to be transient: it was no longer

detectable once actual condensation was underway (Moftah et al.

2002). These results suggest that the signaling system that induces the

spatiotemporal pattern of condensation (i.e., the reaction-diffusion

mechanism under our hypothesis) does not have to maintain stable peaks

of activation throughout the entire period of precartilage condensation.

A set of transiently formed peaks could provide a prepattern for conden-

sations occurring at a later time. Based upon these empirical observa-

tions, we selected reaction parameters in our model giving oscillatory

behavior in order to test the idea that transient signaling could lead to

subsequent condensation-like patterns.

The physical area of a biological cell determines the area of a pixel

on the grid. This value, along with the assumed activator morphogen dif-

fusion rate, permits the temporal scale of the morphogen diffusion, the

chemical reaction, and the overall simulation to be calculated (cell

720 S. CHRISTLEY ET AL.
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area� spatial ratio of cells to molecules� activator diffusion rate ¼
177 mm2

7 cell pixels
� 1 cell pixel

4molecular pixels
� 27molecular pixels�sec

10 mm2�iteration ¼ 17.07 sec=iteration). The

chemical reaction occurs on the same time scale as the overall simula-

tion, but due to the separation of time scales diffusion occurs faster

at 17.07 sec� 200 ¼ 85.3msec for each diffusion step. Since in vitro

experiments have not provided definitive values for the time course of

morphogen activities, and the various morphogens may have other roles

beyond induction of fibronectin production, we did not attempt to cali-

brate the duration of morphogen activity in our simulation to any known

quantities. Instead, given the knowledge that cells respond quickly to

TGF-b, we triggered cell differentiation early in our simulation, when

the sum of units of activator across an entire cell reached a threshold

value of 7,000. However, the transient signal of the morphogen concen-

trations occurs over a period of 500 simulation iterations which corre-

sponds to a little over 2 h. While this appears to be somewhat faster

than the corresponding change in vitro, it is well within an acceptable

range that could be fine tuned once more is known about timing of events

in the micromass culture system.

RESULTS

A comparison of in vitro and in silico results are shown in Figure 2. Visual

inspection of the condensation patterns, as well as statistical analysis of

five simulations with different random initial conditions (not shown),

show a good match between the condensation patterns in a portion of

a micromass culture (see Kiskowski et al. 2004, for details) and the typi-

cal output for the distribution of model cells in a simulation run with

parameter choices as indicated in Table 1.

Given the set of parameter values that produces the condensation

patterns, we explored nearby parameter space by varying key parameters

by �5% and running three replicate simulations for each of these modi-

fied systems. For a decrease of 5% in the activator self-regulation (k1)

smaller fibronectin patches were produced, with the patches spaced

further apart from one another. Similar results were also obtained if

the activator regulation of inhibitor (k3) was increased by 5%. For a

5% increase in the activator self-regulation (k1) fibronectin patches

greatly expanded in size such that the patches touched one another, pro-

ducing a pattern of interconnected stripes instead of spots. Similar

results were obtained if the activator regulation of inhibitor (k3) was

AGENT-BASED SIMULATION FOR CHONDROGENIC PATTERN FORMATION 721
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Figure 2. (a) Discrete spot-like precartilage condensations that have formed after 72 hours in a

micromass culture of 5-day leg bud apical zone limb mesenchymal cells, visualized by Hoffman

ContrastModulation optics. Actual size of themicroscopic field is 1� 1.4mm, and each conden-

sation contains approximately 30–50 tightly packed cells. (b) Spatial grid of equal physical size as

(a) containingover 6000cells producedby simulationusing the parameter values inTable 1 show-

ing fibronectin-producing differentiated cells (dark gray), non-differentiated cells (light gray),

and empty space between cells (white). Each cluster contains on average �30 cells. The fibro-

nectin patches (not shown) are slightly larger than the clusters of differentiated cells, correspond-

ing in size, shape, and distribution to the precartilage condensations in the micromass.

722 S. CHRISTLEY ET AL.
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decreased by 5%. Changing the inhibitor regulation of activator (k2) by

either þ5 or �5% did not significantly alter the size, shape or distri-

bution of the fibronectin patches. Instead, the temporal dynamics were

modified, causing an increase and decrease in the period of the morpho-

gen oscillations with the þ5 or �5% changes, respectively.

DISCUSSION

A benefit of the agent-based approach to cell culture simulation

described here is the ease with which the contribution to biological

phenomena of specific experimentally determined details can be evalu-

ated as to their sufficiency and necessity. Furthermore, because very sim-

ple agent-based models can often capture ‘‘biological’’ features (Wolfram

2002), it is also useful to determine if basic models retain such behaviors

when they are made more realistic.

In the case studied here, in vitro pattern formation in limb bud

precartilage mesenchyme, the starting point was a simple agent-based

model consisting of single-pixel agents representing biological cells,

morphogens, and secreted macromolecular matrices on one uniform grid

(Kiskowski et al. 2004), which captured many quantitative aspects of

the pattern formation process. Our enhanced model incorporates multi-

pixel cells with variable geometry and separation of spatial scales in the

form of modeling cells and morphogen and extracellular matrix mole-

cules on grids of differing mesh size. Realistic values of morphogen

and cell diffusion have also been introduced.

These experimentally motivated modifications and constraints

yielded a model that continues to generate, in a robust fashion, realistic

patterns of cell condensation. In particular, the more sophisticated

model produces fibronectin-rich patches corresponding to condensa-

tions in micromass cultures in size, shape, cell number, and spatial distri-

bution. In contrast to the earlier model, but in keeping with biological

findings, coverage of the virtual culture surface remained continuous

as cells moved small distances, changed their shape in response to the

deposited fibronectin matrix, and maintained their movement within,

and capacity to leave, condensations once these had formed.

We initially separated the spatial scales in our desire for greater bio-

logical fidelity. However, we discovered that the multiple spatial scales

required the introduction of multiple temporal scales, specifically

between the morphogen diffusion and morphogen chemical reaction

AGENT-BASED SIMULATION FOR CHONDROGENIC PATTERN FORMATION 723
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but also with cell diffusion, in order for the parameters to be within the

proper range for production of condensations of the appropriate size and

distribution. Without the separation of time scales, the chemical reaction

parameters would have to be scaled down to the morphogen diffusion

time scale thus resulting in calculations which would be too imprecise

due to rounding errors for low concentrations. Interestingly, if we per-

formed the separation of time scales first, it would have likely led us to

separating the spatial scales nonetheless because the cellular grid is

too coarse for accurate simulation of our calibrated value for molecular

diffusion. Our model provides a case study for how calibration to known

experimental values may require introduction of multiple scales in order

to provide simulation accuracy.

The match between the experimentally determined diffusion coef-

ficient of an activator morphogen of the same molecular family as the

one in our model and the model value required to produce condensa-

tions of the appropriate size and distribution suggests that our model

is physically and biologically reasonable. Since the computational model

provides fine control over the specification of how cells respond to mor-

phogen concentrations and thus alter their functional and differentiated

states, how they produce and secrete morphogens and extracellular

matrix molecules (i.e., fibronectin), how they behave on extracellular

matrices by, for example, changing their shape and motility, there is

ample opportunity to introduce new experimental data. Experimental

values of measured parameters provide constraints on unknown values

which can be evaluated computationally and experimentally.

The dynamics of the model’s cellular-biochemical network that

emerge from simulations also suggest further experimental tests. An

example is the discovery of stationary and oscillatory dynamical regimes

that can both lead to pattern formation. Measuring TGF-b or fibronectin

gene expression during different phases of the culture period can test the

validity of the model, and most importantly, the model’s predictions can

be used to help determine the critical period for pattern formation.

Agent-based representations of developmental and other cellular sys-

tems afford a convenient way of moving between simulation and experi-

ment. The model described here can provide a general framework for

an interdisciplinary approach to studying cells in culture. The strategy

can take the form of the following investigative cycle: (i) establishing a

‘‘core’’ biological model involving various simplifications and assump-

tions; (ii) computational implementation and calibration; (iii) comparison

724 S. CHRISTLEY ET AL.
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of in silico experiments with in vitro biological experiments; (iv)

suggestions for new biological experiments based on disparities between

in silico and in vitro results; (v) new biological experiments and biological

model improvement and=or revision of the computational model.
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