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Abstract

In this paper we study the existence of classical solutions to a new model of skeletal develo
in the vertebrate limb. The model incorporates a general term describing adhesion interact
tween cells and fibronectin, an extracellular matrix molecule secreted by the cells, as well
secreted, diffusible regulators of fibronectin production, the positively-acting differentiation f
(“activator”) TGF-β, and a negatively-acting factor (“inhibitor”). Together, these terms const
a pattern forming system of equations. We analyze the conditions guaranteeing that smoo
tions exist globally in time. We prove that these conditions can be significantly relaxed if we
diffusion term to the equation describing the evolution of fibronectin.
 2004 Elsevier Inc. All rights reserved.

1. Introduction

Providing a mechanistic account of early development of multicellular organism
one of the most challenging tasks in contemporary biology. One of the experime
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best-characterized examples of such development is vertebrate limb formation. Th
skeleton first forms as arrays of rods and nodules of cartilage, which are then re
by bone in most species. The fundamental problem to be addressed by any mat
cal model of limb development is the explanation of pattern formation during cart
differentiation (chondrogenesis). To be more precise, we seek to explain how the c
and molecular interactions occurring during the growth of the avian forelimb, for exa
lead to spatiotemporal differentiation of cartilage, such that the number of bone prim
changes in time from one (humerus), to two (radiusandulna) and to three (digits).

The aim of this paper is to analyze some features of a new model introduc
Hentschel et al. [1]. The system of equations proposed in [1] has the following form:

∂c

∂t
= D∇2c − kc + J (x, t), (1.1)

∂ca

∂t
= Da∇2ca − kacica + J 1

a (ca, ci)R1 + Ja(ca, ci)R2, (1.2)

∂ci

∂t
= Di∇2ci − kacica + kf (ca, ci)R2, (1.3)

∂R1

∂t
= Dcell∇2R1 − div(R1χ∇ρ) + rR1(Req− R) + k21R2 − k12(c, ca)R1, (1.4)

∂R2

∂t
= Dcell∇2R2 − div(R2χ∇ρ) + rR2(Req− R) + k12(c, ca)R1

− k21R2 − k22R2, (1.5)

∂R′
2

∂t
= Dcell∇2R′

2 − div(R′
2χ∇ρ) + rR′

2(Req− R) + k22R2 − k23R
′
2, (1.6)

∂R3

∂t
= r3R3(R3eq− R3) + k23R

′
2, (1.7)

∂ρ

∂t
= kb(R1 + R2) + k′

bR
′
2 − kcρ, (1.8)

wherex ∈ Ω and t > 0 andR = R1 + R2 + R′
2. The equations above involve four di

tinct cell types (R1,R2,R
′
2,R3) that have been identified during the early stages of ske

development. These cells can be characterized by their respective receptors for th
family of growth factors. In the paper we use the notationR1(x, t) to describe the spa
tiotemporal distribution ofR1 cells, with similar notations for the other cell types.
addition we use the following notation: for the local concentration of the FGFs,c(x, t);
for the concentration of fibronectin, which controls the increase in cell density (con
sation), a prerequisite for cartilage differentiation,ρ(x, t); for the activator of fibronectin
production, TGF-β, ca(x, t); and for the associated inhibitor,ci(x, t).

Although this paper is concerned with the mathematical analysis of this set of equa
it is important to amplify some of the key biological points involved, both to set the m
in context, and to establish the importance of carrying out this analysis. A fuller ac
of the biological mechanisms involved can be found in [1], so we will only highlig
few key facts here. A schematic of this model is shown in Fig. 1. Results of some n

ical calculations for a reduced version of system (1.1)–(1.8) derived by separation of time
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Fig. 1. Schematic representation of the biochemical-genetic circuitry underlying the pattern forming ins
described in the model of Hentschel et al. [1], superimposed on a two-dimensional representation of a
limb bud midway through development. The “apical,” “active,” and “frozen” zones containR1, R2 + R′

2 andR3
cells, respectively. In detail of active zoneR′

2 cells are shown to produce, in response to the positively autor
latory activator (TGF-β ; curved arrows), a laterally-acting inhibitor (straight arrows) of the activator. Cells
respond to activator by producing extracellular fibronectin, which promotes cell condensation. The thick
the developing limb extending from the back to front surfaces (dorso-ventral dimension) is collapsed to
this simplified model. PD: proximo-distal; AP: antero-posterior. See [1] for additional details.

scales and gradient expansions are shown in [1]. Stability of different types of patte
demonstrated in Alber et al. [2].

Spatiotemporal cellular differentiation leading to early skeletal development takes
in a domain (the “mesoblast”) consisting of loosely packed “mesenchymal” cells for
the interior of the embryonic limb. The mesoblast is ensheathed by a thin layer of e
onic skin, the “ectoderm,” which secretes growth factors of the FGF family. At the d
tip of the limb the ectoderm forms a raised ridge, the apical ectodermal ridge (AER), w
produces high levels of FGFs and is required for proximo-distal (i.e., oriented away
the body) skeletal development. Just beneath the AER is the population ofR1 cells, which
exist in a state prior to both overt cartilage differentiation and precartilage condens
They are maintained in this state by the FGFs produced by the AER. Equation (1.1
allows us to find the FGF concentrationc that together with the TGF-β concentrationca

is hypothesized to control the subsequent differentiation ofR1 cells intoR2 cells [3] (see
Eqs. (1.4) and (1.5)).R2 cells produce a lateral inhibitor of TGF-β activity and differen-
tiate irreversibly intoR′

2 cells, which produce fibronectin. The terminal cell type in t
pattern-forming process, cartilage, results from the irreversible transformation ofR′

2 cells

into R3 cells. Cartilage cells do not diffuse, and thus form steep density gradients. These
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processes can be represented by the following graph:

R1

k12−→←−
k21

R2
k22−→ R′

2
k23−→ R3,

wherek21, k22 andk23 are constants andk12 = k12(c, ca). It is known [1] thatk12(c, ca)

decreases withc and increases withca (see [1]). Beside to this, both the mobile (R1, R2
andR′

2) cells andR3 cells proliferate according to the logistic law. TGF-β, i.e., activa-
tor (A), is secreted by bothR1 andR2 cells. The molecular identity of the inhibitorI is
unknown, but on the basis of experimental evidence it is assumed to be produce
by R2 cells [3]. ComponentI is assumed to inactivate componentA by forming with it a
complexP . SinceP does not affect the considered process, it is not taken into accou
the model. Thus the kinetics ofA andI can be described schematically by the graphs

R1
J 1
a−→ R1 + A; R2

Ja−→ R2 + A; R2
kf−→ R2 + I ; A + I

ka−→ P.

Finally fibronectin,F , is secreted byR1 andR2 cells at ratekb and byR′
2 cells at ratek′

b,
wherekb � k′

b (see [1]):

R1
kb−→ R1 + F ; R2

kb−→ R2 + F ; R′
2

k′
b−→ R′

2 + F.

Fibronectin decays at ratekc. It is fibronectin which is the actual adhesive component c
ing mesenchymal cell condensation, and its spatiotemporal distribution provides a te
for chondrogenic pattern formation [4–6]. Fibronectin is released by all mobile mese
mal cell types into the extracellular matrix (ECM) creating adhesive gradients up w
the cells can move. This velocity field effectively dragging theR1, R2 andR′

2 cells into
regions of high fibronectin concentration is modeled by the convective terms div(R1χ∇ρ),
div(R2χ∇ρ), div(R′

2χ∇ρ) in Eqs. (1.4)–(1.6). Hereχ is the coefficient describing specifi
features of the cell-fibronectin interaction. Note that in Eq. (1.8) the fibronectin doe
itself diffuse but remains localized in the ECM where it was deposited. This fact tog
with the presence of the above mentioned fibronectin haptotaxis terms is a source
rious mathematical difficulties (see below). By adding Eqs. (1.4)–(1.6) and neglectin
reaction terms, we obtain an equation for the density of mobile cellsR = R1 + R2 + R′

2.
Supposing additionally thatkb = k′

b in Eq. (1.8) one can obtain a system of two equati
(for R andρ), which can be treated as a variant of a system describing chemotaxis
fact suggests that solutions to our original system (1.1)–(1.8) may retain some pro
peculiar to the solutions of the relevant chemotaxis systems. In particular starting fro
propriate initial data they may lose smoothness and attainδ-singularities at some points o
Ω̄ within a finite time. (See [7,8] for analytical proofs and [9] for numerical evidence
also [10] for the existence analysis of unbounded in time solutions. For results conc
blow-up in different variants of chemotaxis equations see, e.g., [11–16].)

System (1.1)–(1.8) exhibits Turing-type instabilities, consistent with an earlier su
tion that vertebrate limb development is governed by this class of mechanisms [6]. R
experiments [17,18] have provided evidence that chondrogenic patterning in cultu
isolated limb cells self-organizes by a Turing-like process involving TGF-β and computa-

tional modeling has confirmed the plausibility of this mechanism [19]. In the system under



M. Alber et al. / J. Math. Anal. Appl. 308 (2004) 175–194 179

em de-

antee
(1.8).
er on
f

l
ical

papers
ficient

.1)–

at
naly-
consideration the prepattern of activator concentration is transferred to the subsyst
scribing the dynamics of moving cells by using the coefficientk12(c, ca) [1].

This paper is mainly concerned with the analysis of the conditions which guar
global existence in time of classical (smooth) solutions to the system of Eqs. (1.1)–
For χ = const (Section 4), these conditions are shown to put strong restrictions eith
the magnitude of some parameters (e.g., on the value ofχ itself) or on the magnitude o
the initial data. The situation changes if we add an arbitrarily small diffusion termε∇2ρ

to Eq. (1.8) (Section 5) and allowχ to be a function ofρ. Then under one additiona
assumption (integrability ofχ(ρ)) we are able to prove the global existence of class
solutions. However, the norms of the derivatives of the solutions might tend to∞ when
ε ↘ 0. The proofs are based on a transformation of dependent variables used in the
[20,21] and uses some of their results. The assumption of integrability of the coef
χ(ρ) is in some sense similar to the modification ofχ introduced in the papers [22,23].

2. Basic assumptions

In what follows we consider the initial boundary value problem for the system (1
(1.8):

Ω ⊂ R
n, ∂Ω ∈ C2+β, β ∈ (0,1).

We assume that all the dependent variables except forR3 andρ satisfy so called no-flux
conditions. Thus on the boundary∂Ω the following conditions hold:

∂c

∂n
= 0,

∂ca

∂n
= 0,

∂ci

∂n
= 0,

∂R1

∂n
= 0,

∂R2

∂n
= 0,

∂R′
2

∂n
= 0, (2.1)

wheren = n(x) is a unit outward normal to∂Ω atx, whereas forx ∈ Ω̄ we have

c(x,0) = c0(x), ca(x,0) = ca0(x), ci(x,0) = ci0(x),

R1(x,0) = R10(x), R2(x,0) = R20(x), R′
2(x,0) = R′

20(x),

R3(x,0) = R30(x), ρ(x,0) = ρ0(x). (2.2)

We also require that the consistency conditions are satisfied, namely that

∂c0(x)

∂n(x)
= 0,

∂ca0(x)

∂n(x)
= 0,

∂ci0(x)

∂n(x)
= 0,

∂R10(x)

∂n(x)
= 0,

∂R20(x)

∂n(x)
= 0,

∂R′
20(x)

∂n(x)
= 0 (2.3)

for all x ∈ ∂Ω .
We suppose that system(1.1)–(1.8) is written in a nondimensional form and th

Dcell = 1. This can be achieved by a proper scaling of the spatial variables. Our a
sis will be carried out under the following assumptions.

Assumption 1. k, D, Da , Di , ka , r , Req, r3, R3eq, kb, k′
b, kc and allkij except fork12 are
positive constants.
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Assumption 2. Let J (x, t) : Ω̄ × [0,∞) → [0,CJ ], CJ > 0, be such that itsCβ,β/2
x,t (Ω ×

(0, t)) norm is bounded independently oft > 0. Let k12, J
1
a , Ja, kf :R1 × R

1 → [0,∞)

be bounded from above by the constantsk̄12, J̄a1, J̄a and k̄f , respectively, and such th
their C1+β(K) norms, whereK ⊂ R

1 × R
1 is a compact set, are bounded from above

constantsCK .

Assumption 3. Suppose that:

(1) The functionsc0(x), ca0, ci0, R10, R20, R′
20, R30 andρ0 are of classC2+β(Ω̄) and

nonnegative inΩ .
(2) ∂ρ0(x)/∂n(x) = 0 for x ∈ ∂Ω .

Assumption 4. Let J 1
a , Ja be identically equal to 0 forca > C̃a > 0 independently ofci .

Let kf (ci, ca) be identically equal to 0 forci > C̃i > 0 independently ofca .

Biologically the last condition means that the production of secreted molecules
after their density attains certain threshold values.

For anyT > 0 let us denote

ΩT := Ω × (0, T ). (2.4)

As we mentioned, we do not impose any boundary conditions forρ (andR3). However,
due to the last assumptionρ preserves no-flux boundary conditions on the maximal inte
of existence of the solution. The following lemma will be used in later sections.

Lemma 1. Let Assumption3 hold. Assume that for there exists a solution to system(1.1)–
(1.8), (2.2), (2.1)bounded inC1,1

x,t (ΩT ) norm. Then

∂ρ(x, t)

∂n(x)
= 0 (2.5)

for x ∈ ∂Ω , t ∈ [0, T ). In the same way∂R3(x, t)/∂n(x) = 0, if ∂R30(x)/∂n(x) = 0.

Proof. According to the assumptions of the lemma the normal derivatives∂R1(x, t)/

∂n(x), ∂R2(x, t)/∂n(x), ∂R′
2(x, t)/∂n(x) are well defined and equal to 0 for allt ∈ [0, T ),

x ∈ ∂Ω , due to conditions (2.1) and (2.3). Also∂ρ(x,0)/∂n(x) is well defined and equa
to 0. Differentiating both sides of Eq. (1.8) along the normaln(x) we obtain an ordinary
differential equation

∂

∂t

[
∂ρ

∂n

]
= −kc

∂ρ

∂n
.

At each point on the boundary this equation can be viewed as an ordinary differ
equation for∂ρ(x, t)/∂n(x) with the initial condition∂ρ(x,0)/∂n(x) = 0. Using the Gron-
wall’s inequality we conclude the proof of the lemma. The proof forR3 can be carried ou

in a similar way. �
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3. Main results

In what follows by a global solution we mean a solution defined fort ∈ (0,∞). In
Section 4 we will analyze the caseχ = const> 0. Under Assumptions 1–4 we will prov
existence of a unique global solution of system (1.1)–(1.8) satisfying conditions (2.1
(2.2). This solution is nonnegative in every of its components. However, to obtain
result we have to assume that eitherχ or the numbers(kb + k′

b)/kc andχ‖ρ0‖C0(Ω) are
sufficiently small. This result is stated in Theorem 1 and in explanatory Remark 3.

In Appendix A we consider system (1.1)–(1.8) with Eq. (1.8) replaced by

∂ρ

∂t
= ε∇2ρ + kb(R1 + R2) + k′

bR
′
2 − kcρ. (3.1)

In this case Assumptions 1–4 and integrability ofχ imply the existence of a unique solutio
globally in time. This result is stated in Theorem 4. Of course, as we mentioned
Introduction the norms of the derivatives of the solutions may tend to∞ whenε ↘ 0.

Methods of proof. As we mentioned above the main obstacle to applying the standar
ory of systems of parabolic equations is the presence of the terms proportional to∇2ρ in
the equations for the moving cells. To eliminate these terms we apply a transforma
variables used in the papers [20] and [21]. The price we pay for it, namely additiona
differential terms appearing in the equations, is of much less importance than the adv
we gain. The next step consists in proving the existence of a solution fort ∈ (0, T ), with
T > 0 sufficiently small, by using the contraction mapping theorem, as it is done in
or [21]. This solution is locally unique. It is crucial that the value ofT , for which the
contraction mapping theorem applies, depends only on appropriate Hölder space
of the initial data (and the coefficients of the system). Thus, when we are able to
a priori estimates of these norms, we can apply the same procedure once more,
the obtained solution as a new initial condition. In particular, if the a priori estimate
not depend onT , then repeating the process step by step, we can prove the existe
a global (in time) solution. In obtaining a prioriC0 bounds for the solutions, in sever
instances we employed theorems of invariant region type. This is an additional elem
the proof, which in general follows the lines of the papers [20] and [21].

4. Existence theorem

In this section we assume thatχ = const> 0. The main result of the section is repr
sented in the form of the following theorem.

Theorem 1. Let Assumptions1–4be satisfied. Letχ = const> 0. Suppose that one of th
conditions holds:

(10) χ is sufficiently small,

(20) χ‖ρ0‖C0(Ω) < 1 and the number(kb + k′

b)/kc is sufficiently small.
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Then for all t ∈ (0, T ), T ∈ (0,∞), there exists a unique solution of system(1.1)–(1.8)
satisfying conditions(2.1) and (2.2). This solution is nonnegative and every compon
except forR3 has itsC

2+β,1+β/2
x,t (ΩT ) norm bounded by a constant independent ofT ,

whereasR3 has itsC0,1
x,t (ΩT ) norm bounded by a constant independent ofT .

Before proving this theorem we establish several preliminary results.
The main difficulty in obtaining a priori bounds for the solutions of system (1.1)–(1.

the presence of the terms div(R1χ∇ρ), div(R2χ∇ρ) and div(R′
2χ∇ρ). To get rid of them

we will apply a nonlinear transformation ofR1, R2 andR′
2 variables (see [20] and [21]).

Let

f (ρ) = exp

( ρ∫
0

χ(s) ds

)
. (4.1)

For χ = const we have simplyf (ρ(x)) = exp(χρ(x)). Let us introduce new variablesS1,
S2, S4 andS by using the following formulae:

S1 = R1

f (ρ)
, S2 = R2

f (ρ)
, S4 = R′

2

f (ρ)
, S = S1 + S2 + S4. (4.2)

After applying this transformation and settingDcell = 1, the system of Eqs. (1.1)–(1.8) h
the form

∂c

∂t
− D∇2c = −kc + J (x, t), (4.3)

∂R3

∂t
= r3R3(R3eq− R3) + k23f (ρ)S4, (4.4)

∂ca

∂t
− Da∇2ca = −kacica + J 1

a (ca, ci)f (ρ)S1 + Ja(ca, ci)f (ρ)S2, (4.5)

∂ci

∂t
− Di∇2ci = −kacica + kf (ca, ci)f (ρ)S2, (4.6)

∂S1

∂t
− ∇2S1 = χ∇ρ · ∇S1 + rS1

(
Req− f (ρ)S

) + k21S2

− k12(c, ca)S1 − χS1g, (4.7)

∂S2

∂t
− ∇2S2 = χ∇ρ · ∇S2 + rS2

(
Req− f (ρ)S

) + k12(c, ca)S1

− k21S2 − k22S2 − χS2g, (4.8)

∂S4

∂t
− ∇2S4 = χ∇ρ · ∇S4 + rS4

(
Req− f (ρ)S

) + k22S2 − k23S4 − χS4g, (4.9)

∂ρ

∂t
= g(S1, S2, S4, ρ), (4.10)

whereg = kbf (ρ)(S1 + S2) + k′
bf (ρ)S4 − kcρ.

Notice that the solution of the first equationc(x, t) (with ∂c/∂n = 0 at the boundary
exists globally inC2+β,1+β/2 class and is nonnegative for nonnegative initial valuesc(x,0)
asJ (x, t) � 0. The second equation does not influence the rest of the system. Therefore,
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we can confine ourselves to the system containing only the last six equations. Th
consider the initial boundary value problem for the system (4.5)–(4.10). That is to s
assume that forx ∈ ∂Ω and all t � 0 in the interval of solution existence the followin
boundary conditions are satisfied:

∂ca(x, t)

∂n
= 0,

∂ci(x, t)

∂n
= 0,

∂S1(x, t)

∂n
= 0,

∂S2(x, t)

∂n
= 0,

∂S4(x, t)

∂n
= 0. (4.11)

Simultaneously, we require that forx ∈ Ω̄ ,

ca(x,0) = ca0(x), ci(x,0) = ci0(x),

S1(x,0) = S10(x), S2(x,0) = S20(x), S4(x,0) = S40(x),

ρ(x,0) = ρ0(x) (4.12)

and that the consistency conditions are satisfied, i.e., for allx ∈ ∂Ω ,

∂ca0(x)

∂n(x)
= 0,

∂ci0(x)

∂n(x)
= 0,

∂S10(x)

∂n(x)
= 0,

∂S20(x)

∂n(x)
= 0,

∂S40(x)

∂n(x)
= 0. (4.13)

Remark 1. The boundary conditions forSi follow from the boundary conditions (2.1) fo
the initial problem, Assumption 3 and Lemma 1. Next, according to (4.2), we have

S10(x)f
(
ρ0(x)

) = R10(x), S20(x)f
(
ρ0(x)

) = R20(x),

S10(x)f
(
ρ0(x)

) = R10(x).

Assumption 5. χ = const> 0.

Let

U = (ca, ci, S1, S2, S4, ρ). (4.14)

Let the vector on the right and left-hand sides of the system of Eqs. (4.5)–(4.10) be d
by

Φ(U) = (
Φ1(U),Φ2(U),Φ3(U),Φ4(U),Φ5(U),Φ6(U)

)
and

L(U) = (
L1(U),L2(U),L3(U),L4(U),L5(U),L6(U)

)
,

respectively. Given vector̃U , let P(Ũ) be the solution of the system

L(U) = Φ(Ũ),

in the setΩT = Ω × (0, T ) for someT > 0 subject to the initial and boundary conditio
(4.12) and (4.11). Let us consider the mapping
U = P(Ũ).
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According to the Schauder estimates (see, e.g., [24,25]) forT > 0 sufficiently smallP is
a contractive mapping acting in the spaceC

1+β,(1+β)/2
x,t (ΩT ). Thus from the contractio

mapping principle we infer thatP has a unique fixed point in the same space. Moreo
this fixed point is of class

C
2+β,1+β/2
x,t (ΩT )

and in fact is a solution of the system

LU = Φ(U).

One can prove thatT depends only on theC2+β
x (Ω) norm of the initial data. The proo

may be carried out along the lines of [21, p. 1336]. It is based on the a priori esti
in C

2+β,1+β/2
x,t (ΩT ) space (see Theorem IV.5.3 in [24]) and elementary theory of ordi

differential equations. For the convenience of the reader we have sketched the p
Appendix A. It follows from being able to prove a priori that theC

2+β,1+β/2
x,t (ΩT ) norm

of all the components ofU is bounded by a common constantC, which is independen
of T , that we can conclude, by applying the continuation method, that the solution
globally.

The crucial condition for this analysis is provided by the following assumption.

Assumption 6. Suppose that for allx ∈ Ω , 0 � ca0(x) < Ca and 0� ci0(x) < Ci with
Ca > C̃a andCi > C̃i . Suppose that there exists a positive solution(S̄1, S̄2, S̄4, ρ̄) to the
system of algebraic inequalities:

rS1(Req− S1) + k21S2 − χkbS
2
1 + χkcS1ρ < 0,

rS2(Req− S2) + k̄12S1 − χkbS
2
2 + χkcS2ρ < 0,

rS4(Req− S4) + k22S2 − χk′
bS

2
4 + χkcS4ρ < 0,

kb(S1 + S2) + k′
bS4 − kcρ exp(−χρ) < 0, (4.15)

such that for allx ∈ Ω̄ ,

0� S10(x) < S̄1, 0� S20(x) < S̄2, 0� S40(x) < S̄4, 0< ρ0(x) � ρ̄, (4.16)

andρ̄ � 1
χ

.

Remark 2. Conditions (4.15) are closely related to the invariant region establishe
using sub- and supersolution method (see [26–28]). Namely, inequalities (4.15) a
inequalities

−kaciCa + J 1
a (Ca, ci)f (ρ)S1 + Ja(Ca, ci)f (ρ)S2 � 0,

−kaCica + kf (Ci, ca)f (ρ)S2 � 0, (4.17)

which, due to Assumption 4, hold for allca ∈ [0,Ca], ci ∈ [0,Ci], S1 ∈ [0, S̄1], S2 ∈
[0, S̄2], ρ ∈ [0, ρ̄] provide a sufficient condition for inequalities (B.3) in Appendix B
hold for Y = [Ca,Ci, S̄1, S̄2, S̄4, ρ̄]. Obviously, fory = [0,0,0,0,0,0] inequalities (B.2)

are satisfied.
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Remark 3. Notice that the set of parameters for which there exists a solution of (4.1
not empty. Obviously, forχ = 0 and any nonnegative data (4.15) always has a solu
Since the solution persists for sufficiently smallχ > 0, we can takēρ = (

√
χ )−1. Then

ρ̄ exp(−χρ̄) = (
√

χ )−1 exp(−√
χ ) can be made arbitrarily large, whereasχρ̄ = √

χ is
arbitrarily small. Ifχ is not small some parameters can be still chosen to be small en
to guarantee the existence of a global solution. To be more specific, letw = ‖ρ0‖C0(Ω) and
wχ < 1. Letγ ∈ (1,∞). Consider the system of equations:

rS1(Req− S1) + k21S2 − χkbS
2
1 + γ kcS1 = 0,

rS2(Req− S2) + k̄12S1 − χkbS
2
2 + γ kcS2 = 0,

rS4(Req− S4) + k22S2 − χk′
bS

2
4 + γ kcS4 = 0. (4.18)

For fixedS4 = ζ � 0 the set of points with positive coordinates satisfying the first

the second equation can be written asSi = B(γ ) +
√

B2(γ ) + DiSj(i), wherej (i) = 2
for i = 1, j (i) = 1 for i = 2, B(γ ) > 0, Di > 0 andB(γ ) grows withγ . In the quarter
{S1 � 0, S2 � 0} these curves intersect at exactly one point(S̄1(γ ), S̄2(γ )) with its coordi-
nates growing withγ . The intersection of the set of points satisfying the third equation
the plane{S4 = ζ } can be written in the formk22S2 = −(rReq+ γ kc)ζ + (r + χk′

b)ζ
2. By

changingζ one notes that there exists exactly oneζ = S̄4(γ ) > 0 for which the last straigh
line passes through the point(S̄1(γ ), S̄2(γ )). Consequently this system has a unique p
itive solution(S̄1(γ ), S̄2(γ ), S̄4(γ )) growing (componentwise) withγ . We may chooseγ
so large that̄Si > Si0(x) for all x ∈ Ω̄ , i = 1,2,4. Let k̄b = max{kb, k

′
b} and suppose tha

k̄b/kc is so small that the expression[kb(S̄1 + S̄2) + k′
bS̄4]exp(1)/kc is smaller thanχ−1.

Then forρ̄ = χ−1, (S̄1, S̄2, S̄4) satisfying (4.18), also satisfy (4.15) (with̄ρ = χ−1). Thus,
we have proven that ifχ‖ρ0‖C0(Ω) < 1 andk̄b/kc is sufficiently small then Assumption
is satisfied.

The next lemma will be crucial in our analysis.

Lemma 2. Suppose that Assumptions1–5hold. Then for all possibleC2,1
x,t (ΩT ) solutions

of system(4.5)–(4.10)we have

0� (ca, ci, S1, S2, S4, ρ)(x, t) < (Ca,Ci, S̄1, S̄2, S̄4, ρ̄). (4.19)

Proof. Given functionρ(x, t) (together withc(x, t)) the system (4.5)–(4.9) becomes
system of five parabolic equations. According to Assumption 6 as long asρ(x, t) < ρ̄, the
parallelepiped 0� (ca, ci, S1, S2, S4)(x, t) < (Ca,Ci, S̄1, S̄2, S̄4) (see Remark 2 following
Assumption 6) is an invariant set. So solution (which is locally unique) must satisf
nonnegativity conditionca(x, t) � 0, ci(x, t) � 0 andSi(x, t) � 0, i = 1,2,4. This fol-
lows from Theorem B.1 described in Appendix B and which was taken from [26]. N
that Theorem 1 from [28] cannot be applied directly to the system (4.5)–(4.9) beca
specific conditions assumed in the case of zero-flux boundary conditions (see [28, p

The right-hand side of the equation forS1 is nonnegative forS1 = 0, 0 � S2 � S̄2

and 0� S4 � S̄4 independently of the value ofρ. Note also that when the functionρ is
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treated as given and belongs at least toC
1+β
x , then we can obviously find a priori boun

for the functions∇Si , i = 1,2,4, as well as for∇ca,∇ci by means of theirC0 norms
(e.g., [24, Theorem V.7.2]). Now we can prove thatρ(x, t) � 0 in ΩT . Suppose the con
trary, namely thatρ attains the minimal value inΩt0, t0 � T , at a point(t0, x0) and that
ρ(t0, x0) < 0. We should have then(∂/∂t)ρ(t0, x0) � 0. This leads to a contradiction sinc
asSi(t0, x0) � 0 it follows from Eq. (4.10) that(∂/∂t)ρ(t0, x0) > 0. Now, suppose tha
ρ(x, t) attains the maximal value inΩt0 at a point(t0, x0) which coincides withρ̄, whereas
Si(t0, x0) � S̄i . Again, this leads to a contradiction because it follows from Eq. (4.10)
(∂/∂t)ρ(t0, x0) < 0. �

Now we can formulate the first existence theorem.

Theorem 2. Let Assumptions1–6hold. Then for anyT > 0 there exists a unique solutio
to the system(4.5)–(4.10)subject to the initial-boundary conditions(4.12)and(4.11)such
that C2+β,1+β/2

x,t (ΩT ) norms of all the components are bounded by constants indepe
of T .

Proof. According to the above remarks it is sufficient to prove a priori estimates fo
solution which are independent ofT . From Lemma 2 we know that if theC2+β,1+β/2

x,t (ΩT )

solution to the considered problem exists then all of its last four components are bo
in C0 norm by constants independent ofT . It follows that

f
(
ρ(x, t)

)
� 1, ‖f ‖C0(ΩT ) � C0, ‖Φ̃‖C0(ΩT ) � C0, (4.20)

whereΦ̃ = (Φ3,Φ4,Φ5,Φ6) andC0 is independent ofT . Therefore, conditions (4.4) from
[20] are satisfied. This results in following the estimates:

‖ca‖C
β,β/2
x,t (ΩT )

� K, ‖ci‖C
β,β/2
x,t (ΩT )

� K, (4.21)

whereK is independent ofT . To proceed, we have to show that similar estimates h
for Si :

‖Si‖C
β,β/2
x,t (ΩT )

� K, (4.22)

whereK is also independent ofT . This cane be done by applying the arguments use
[20, p. 147] for each of the equations (4.7)–(4.9) separately.

The next step is to prove similar estimates for the functionρ and its derivative with
respect tot . For givenx, y ∈ Ω let

ρ
β

(x,y)(x, t) := ρ(x, t) − ρ(y, t)

|x − y|β , S
β

i,(x,y)(x, t) := Si(x, t) − Si(y, t)

|x − y|β .

Then functionρβ

(x,y) satisfies the equation

∂

∂t
ρ

β

(x,y)(x, t)

= {
χf

(
ρθ (x, y, t)

)[
kb

(
S1(y, t) + S2(y, t)

) + k′
bS4(y, t)

] − kc

}
ρ

β

(x,y)(x, t){ ( ) } ( )
+ kb S
β

1,(x,y) + S
β

2,(x,y) + k′
bS

β

4,(x,y) f ρ(x, t) , (4.23)



M. Alber et al. / J. Math. Anal. Appl. 308 (2004) 175–194 187

:

t

lds
n

4)

dent
).

of the

at
which was obtained by using the identityab − a0b0 = a(b − b0)+ b0(a − a0) and notation

ρθ (x, y, t) = ρ(x, t) + θ(x, y, t)
(
ρ(y, t) − ρ(x, t)

)
,

whereθ(x, y, t) ∈ [0,1]. For fixedx andy the last equation has the following structure

ζ ′ = ξ(t)ζ + φ(t),

where, according to our previously obtained estimates,φ(t) is bounded for allt ∈ [0, T ).
Thus, as long asξ(t) < 0 for all t ∈ [0, T ) we have that∣∣ζ(t)

∣∣ � max
{∣∣ζ(0)

∣∣,1/ξminK̃1
}
, (4.24)

whereK̃1 depends only onC0 norm of ρ andCβ,β/2 norms ofSi on ΩT . Therefore, it
is independent ofT . Hereξmin is the minimal value of the function|ξ | on the interval
[0, T ). Let us analyze the conditionξ(t) < 0. After denotingρθ (x, y, t) = ρ we see tha
the conditionξ < 0 for all ρ ∈ [0, ρ̄] is implied by the last condition from (4.15) if only

ρ̄f (−ρ̄)χf (ρ) � 1. (4.25)

However,χ = const andf (ρ) is an increasing function. Hence, condition (4.25) ho
for ρ ∈ [0, ρ̄] if it holds for ρ = ρ̄. But for ρ = ρ̄ it is equivalent to the last condition i
Assumption 6. Therefore, the fact thatξ(t) < 0 is independent ofT . Sinceρ(x, t) is of C1

class with respect tot then it is ofCβ/2 class as well. Thus by using the inequality (4.2
we have that

‖ρ‖
C

β,β/2
x,t (ΩT )

� K1. (4.26)

Now, let

ρ
β/2
(t,τ )(x, t) := ρ(x, t) − ρ(x, τ )

|t − τ |β/2
, S

β/2
i,(t,τ )(x, t) := Si(x, t) − Si(x, τ )

|t − τ |β/2

and

ρ
β/2
t,(t,τ )(x, t) :=

∂ρ
∂t

(x, t) − ∂ρ
∂t

(x, τ )

|t − τ |β/2
.

The functionρ
β/2
t,(t,τ )(x) can be expressed in terms of the constantskb, k′

b andkc and the

functionsρ
β/2
(t,τ )(x) andS

β/2
i,(t,τ )(x) with absolute values bounded by constants indepen

of the points(x, t), (x, τ ) ∈ ΩT andT itself (which follows from the previous estimates
Next, the right-hand side of Eq. (4.23) is in fact equal to[∂ρ(x, t)/∂t − ∂ρ(y, t)/∂t]/
|x − y|β . We conclude from the estimates (4.26) and (4.22) that the absolute value
last function is also bounded by constants independent of the points(x, t), (x, τ ) ∈ ΩT

andT . We have thus proved that∥∥∥∥∂ρ

∂t

∥∥∥∥
C

β,β/2
x,t (ΩT )

� K2. (4.27)

By using (4.26) and (4.27) and method from Theorem 2.2 in [20] we can prove thSi

are bounded in the spaceC1+β,β/2 by constants independent ofT . Using the obtained

estimates, similar calculations can be carried out for the components of the functions∇ρ
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and ∂/∂t (∇ρ) resulting in demonstration ofρ being bounded in the norm of the spa
C1+β,β/2. By applying the Schauder estimates to the system (4.7)–(4.9), and repeat
above procedure to Eq. (4.10) we conclude the proof of the theorem.�
Remark 4. Theorem 2 implies that there exists a global smooth solution of the sy
(4.5)–(4.10). We also know that there exists a unique solution of Eq. (4.3). By usin
functionsS1(x, t), S2(x, t), S4(x, t) andρ one can obtain the functionsR1(x, t), R2(x, t)

andR′
2(x, t). The last function can be used for proving the existence of a unique so

of Eq. (1.7) defined for(x, t) ∈ Ω̄T and for anyT ∈ (0,∞). Notice thatR3(x, t) � 0. (For
sufficiently smallR3 � 0,∂R3/∂t � 0 due to the nonnegativity ofR′

2.) SinceR′
2 is globally

bounded and there is a minus sign in front of the quadratic termr3R
2
3, R3(x, t) is bounded

from above by a positive constant.

Proof of Theorem 1. The proof follows from the proof of Theorem 2 and Remark
and 4. �

5. Case of nonzero diffusion coefficient of fibronectin

The aim of this section is to study global existence in time of solutions of the sy
with the termε∇2ρ added to the last equation. In what follows we assume thatχ , which
now can depend onρ, is an integrable decreasing function of its argument. In con
to Section 4, we do not make any assumptions about the behavior of the coefficie
the system and the magnitude of the initial data. On the other hand, under these
conditions we cannot exclude in general case possibility ofC0 norms of the derivatives o
the solutions tending to∞ asε ↘ 0.

Consider system (1.1)–(1.7) together with the equation

∂ρ

∂t
= ε∇2ρ + kb(R1 + R2) + k′

bR
′
2 − kcρ (5.1)

and initial-boundary conditions (2.2) and (2.1) and the boundary condition forρ

∂ρ(x, t)

∂n(x)
= 0, x ∈ ∂Ω. (5.2)

As in Section 4, by using transformation (4.1)–(4.2) the analysis of the above sys
reduced to analyzing system (4.5)–(4.10) subject to the initial-boundary conditions
and (4.11) with Eq. (4.10) replaced by the equation

∂ρ

∂t
− ε∇2ρ = g(S1, S2, S4, ρ), (5.3)

whereg = kbf (ρ)(S1 + S2) + k′
bf (ρ)S4 − kcρ.

Assumption 7. Let C2  χ :R1 → [0,∞) be a decreasing and integrable function with
∞∫

χ(s) ds = K.
0
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Obviously, the last assumption implies thatρχ(ρ) → 0 asρ → ∞.
As in Section 4 the global existence of bounded solutions is implied by the exis

of solutions to an algebraic system of inequalities corresponding to the system (4.1
(4.16). The crucial difference is the fact that now we do not require that a condition s
to the conditionρ̄ � 1/χ be satisfied. Namely, even without this condition we are abl
find an estimate for the Hölder norm of the functionρ.

Lemma 3. Assume thatχ satisfies Assumption7. Then the system

rS1(Req− S1) + k21S2 + sup
ρ∈[0,ρ̄]

[−χ(ρ)kbS
2
1 + χ(ρ)S1kcρ

]
< 0,

rS2(Req− S2) + k̄12S1 + sup
ρ∈[0,ρ̄]

[−χ(ρ)kbS
2
2 + χ(ρ)S2kcρ

]
< 0,

rS4(Req− S4) + k22S2 + sup
ρ∈[0,ρ̄]

[−χ(ρ)kbS
2
4 + χ(ρ)S4kcρ

]
< 0,

kb(S1 + S2) + k′
bS4 − kcρ exp

(
−

ρ∫
0

χ(s) ds

)
< 0 (5.4)

has a positive solution(S̄1, S̄2, S̄4, ρ̄) such that for allx ∈ Ω̄ ,

0� S10(x) < S̄1, 0� S20(x) < S̄2, 0� S40(x) < S̄4, 0< ρ0(x) � ρ̄. (5.5)

Proof. Let η = supρ∈[0,∞] χ(ρ)ρ. Then there exists a solution̄S1, S̄2, S̄4 of the system

rS1(Req− S1) + k21S2 + kcηS1 < 0,

rS2(Req− S2) + k̄12S1 + kcηS2 < 0,

rS4(Req− S4) + k22S2 + kcηS4 < 0, (5.6)

satisfying the first three of the conditions (5.5). Putting this solution into the fourth ine
ity in (5.4) results in the following condition:

kb(S̄1 + S̄2) + k′
bS̄4 − kcρ̄ exp

(
−

ρ̄∫
0

χ(s) ds

)
< 0.

However, exp(− ∫ ρ̄

0 χ(s) ds) > exp(−K) and thus there exists finiteρ∗ > 0 such that for
all ρ̄ > ρ∗ this condition is satisfied and alsōρ � ρ0(x) in Ω . But any suchρ̄ satisfies also
the first three inequalities of system (5.4) asρ̄χ(ρ̄) � η. �

Now we can prove the following theorem.

Theorem 3. Let Assumptions1–4and7 hold. Then for anyT > 0 there exists a unique so
lution of the system(4.5)–(4.9)and (5.1)subject to the initial-boundary conditions(4.12),
(4.11)and (5.2), such that theC2+β,1+β/2

x,t (ΩT ) norms of all its components are bound

by constants independent ofT and every component has itsC0 norm independent ofε
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andT . Moreover, for anyγ ∈ (0,1) theC
1+γ,γ
x,t (ΩT ) norms of the functionsca andci are

independent ofε.

Proof. The proof is similar to the proof of the Theorem 2 and involves contraction m
ping theorem in the spaceC1+β,(1+β)/2

x,t (ΩT ) for sufficiently smallT > 0. The difference

is that this time we can estimate theC
1+β,(1+β)/2
x,t (ΩT ) norm of the functionρ (globally

in time) by the Schauder estimates (see, e.g., [24,25]) only by usingC0 bounds for the
functionsca, ci, S1, S2 andS4. Of course this norm may grow withε ↘ 0. On the other
hand, for anyγ ∈ (0,1) the norms of the functionsca andci depend only on theC0 norms
of the right-hand sides of Eqs. (4.5) and (4.6). These norms are independent ofε. �

Theorem 3 and Remark 4 imply existence of the solution of the initial value proble

Theorem 4. Let Assumptions1–4be satisfied. Letχ be positive, decreasing and integrab
function ofρ of C2 class. Then for everyε > 0 there exists a unique classical solutio
of the system(1.1)–(1.7), (5.1) satisfying conditions(2.1), (5.2) and (2.2) defined for all
t ∈ (0, T ), T ∈ (0,∞). This solution is nonnegative and has itsC0 norm bounded by a con
stant independent ofε andT . And every component except forR3 has itsC2+β,1+β/2

x,t (ΩT )

norm bounded by a constant independent ofT ∈ (0,∞). Moreover, for anyγ ∈ (0,1), the
C

1+γ,γ
x,t (ΩT ) norms of the functionsca andci are independent ofε.

6. Conclusions

In this paper we prove some existence theorems for the system (1.1)–(1.8). In p
lar, we prove that under certain conditions on the coefficients of the system or on the
data a unique classical solution exists globally in time. The condition of sufficiently s
initial value forρ is biologically plausible, because the earliest cells in the developing
(R1 cells) secrete fibronectin only at relatively a small ratekb � k′

b. The assumptions tha
the numbersχ or max{kb, k

′
b}/kc are sufficiently small seem to be rather restrictive, ho

ever. At present there is a lack of precise experimental data to confirm their validit
have not proved that the conditions from Theorem 1 are necessary for the global ex
of smooth solutions. As we mentioned the possibility of blow-up of the solutions is
gested by [7] and [8], though the corresponding analysis would be much more comp
in the case of system (1.1)–(1.8).

We also show that by introducing arbitrarily small diffusion of fibronectin, we can
duce significantly the number of conditions necessary for the global existence of s
solutions. Again while fibronectin diffusion in the ECM will certainly be slow becaus
its size and adhesive character, the assumption of a small finite diffusibility of fibron
is by no means excluded by the biological evidence. For example, the domain of
of fibronectin spreads from its sites of initial deposition by conversion of its initially c
pact structure to a more extended structure [32]. Our dynamical analysis suggests t
important property of fibronectin matrix assembly may be a key aspect of developm
stability. The parabolic perturbation of Eq. (1.8) is thus a reasonable modification

initial model.
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Of course this is only the first step of the analysis. We do not examine large time a
totics of the solutions, which in fact determines the final pattern in the considered m
Another important question concerns the region of validity of our model equations
clear that at high cellular densities, the use of PDEs to describe embryological de
ment (which involves discrete multicellular processes) must break down. This break
will occur at scales of the order of a few cell diameters (i.e., on a linear scale of 102 mi-
crons), and to study events at this scale we will need to use discrete mathematical m
such as cellular automata (see [19]). Finally, in order to accurately describe the p
of vertebrate limb formation one needs to take into account its growth, that is to sa
needs to consider a free boundary problem involving PDEs in a complex evolving do
whose growth and shape depend on the solution of these PDEs (cf., e.g., [29–31]).
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Appendix A. Properties of the operator P

P is a well-defined mapping from the spaceM = C
1+β,(1+β)/2
x,t (ΩT ) to itself. The norm

‖U‖M in this space is given by the sum ofC
1+β,(1+β)/2
x,t (ΩT ) norms ofUi . Note that

‖Ui‖C
1+β,(1+β)/2
x,t (ΩT )

= sup
x∈Ω

∥∥Ui(x, ·)∥∥
C

(1+β)/2
t ((0,T ))

+ ‖∇Ui‖C
β,β/2
x,t (ΩT )

. (A.1)

(See Section I.1 in [24].) LetU0 denote the vector of initial functions and consider a clo
ball B in the considered space defined byB = {U ∈ M: ‖U − U0‖M � 1}. Let Ũ ∈ B.
Then from the Schauder estimates (see Theorem IV.5.3 in [24]) and elementary the
ordinary differential equations we know that ast → 0,∥∥U(·, t) − U0(·)

∥∥
C

1+β
x (Ω)

→ 0. (A.2)

From the same estimates and the definition of the Hölder norms (Section I.1 in [24
know that∥∥∥∥∂U

∂t

∥∥∥∥
C

0,0
x,t (ΩT )

< K1,
∥∥D2

xU(x, ·)∥∥
C

β/2
t ((0,T ))

< K2,

∥∥∇U(x, ·)∥∥
C

(1+β)/2
t ((0,T ))

< K3, (A.3)

independently ofx ∈ Ω̄ . The constantsKi can be chosen independent ofŨ ∈ B. From
(A.2) and the first inequality in (A.3) we infer that the first term at the right-hand
of (A.1) tends to zero forT → 0 asT 1/2−β/2. From (A.2) and the second inequality
(A.3) we infer that‖U(·, t)−U0(·)‖C

1+β
x (Ω)

tends to zero forT → 0 asT β/2. Finally from

(A.2) and the third inequality (A.3) we infer that‖∇U(x, ·) − ∇U0(x)‖

C
β/2
t ((0,T ))

tends
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to zero forT → 0 asT 1/2. Consequently,‖U − U0‖M behaves likeK4 T δ , δ > 0, where
the constantK4 depends on theC2+β,1+β/2 norms ofU0 and the regionΩ . It follows
that for T > 0 sufficiently smallP acts fromB to B. Using the fact thatΦ is of class
C1+β and proceeding in the same way we can easily prove that‖P(U2) − P(U1)‖M �
T νK5‖U2 − U1‖M, for all U1,U2 ∈ B with ν > 0. Hence forT > 0 sufficiently small the
mapping is a contraction fromB to B.

Appendix B. Existence theorem via sub and super solution method

We consider a system of parabolic equations of the form

Li(x, t)ui = fi(x, t, u,∇u), (x, t) ∈ ΩT , T > 0,

∂ui

∂n
= 0, x ∈ ∂Ω,

ui(x,0) = ui0(x), (B.1)

whereΩT := Ω × (0, T ), i ∈ {1, . . . ,m � 1}, Ω ⊂ R
n is an open bounded domain wi

∂Ω of C2+β class,β ∈ (0,1), n = n(x) is a unit outward normal to∂Ω at x, andui0 ∈
C2+β(Ω̄) satisfies compatibility condition∂ui0/∂n = 0 on ∂Ω . The parabolic operator
have the following form:

Li = − ∂

∂t
+ Di(x, t)∇2.

We assume that for alli ∈ {1, . . . ,m}, all (x, t) ∈ π̄ , Di is of classC1 and

∞ > ν � Di(x, t) � µ > 0

for all (x, t) ∈ π̄ . Above, for simplicity we denoted

π := ΩT .

We assume also thatfi : π̄ × R
m × R

mn → R
m are locally Hölder continuous with expo

nentsβ, β/2, β, β, respectively.

Assumption B.1. For anyC2,1 solution to system (B.1) with itsC0 norm onπ̄ bounded
by a constantη < ∞ we have an a priori estimate

‖∇u‖ � W(η),

whereW :R1 → R
1 is a continuous function depending on the coefficients of system (

andΩ , but not depending on the solutionu.

Now, let y,Y : π̄ → R
m, be given, with y,Y ∈ C2,1(π̄), y = (y1, . . . , ym), Y =

(Y1, . . . , Ym). Assume thaty(x, t) < Y(x, t) componentwise on̄π . Let [y,Y ] := {u ∈
R

m: yi(x, t) � ui � Yi(x, t), (x, t) ∈ π̄}. We have the following invariance principle.

Theorem B.1 (see [26]). Assume that for allx ∈ ∂Ω , i ∈ {1, . . . ,m},
∂yi ∂Yi
∂n
� 0,

∂n
� 0
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and that for all(x, t) ∈ π̄ , yj � uj � Yj , j �= k, k = {1, . . . ,m},
Lk(x, t)yk − fk(x, t, u1, . . . , uk−1, yk, uk+1, . . . , um,∇u1, . . . ,∇uk−1,∇yk,

∇uk+1, . . . ,∇um) � 0, (B.2)

Lk(x, t)Yk − fk(x, t, u1, . . . , uk−1, Yk, uk+1, . . . , um,∇u1, . . . ,∇uk−1,∇Yk,

∇uk+1, . . . ,∇um) � 0. (B.3)

Then system(B.1) has at least one solutionu : π̄ → R
m such that itsC2,1

x,t (π) norm is
bounded and its values are contained in[y,Y ] for all t ∈ [0, T ].
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