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Abstract

In this paper we study the existence of classical solutions to a new model of skeletal development
in the vertebrate limb. The model incorporates a general term describing adhesion interaction be-
tween cells and fibronectin, an extracellular matrix molecule secreted by the cells, as well as two
secreted, diffusible regulators of fibronectin production, the positively-acting differentiation factor
(“activator”) TGF8, and a negatively-acting factor (“inhibitor”). Together, these terms constitute
a pattern forming system of equations. We analyze the conditions guaranteeing that smooth solu-
tions exist globally in time. We prove that these conditions can be significantly relaxed if we add a
diffusion term to the equation describing the evolution of fibronectin.

0 2004 Elsevier Inc. All rights reserved.

1. Introduction

Providing a mechanistic account of early development of multicellular organisms is
one of the most challenging tasks in contemporary biology. One of the experimentally
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best-characterized examples of such development is vertebrate limb formation. The limb
skeleton first forms as arrays of rods and nodules of cartilage, which are then replaced
by bone in most species. The fundamental problem to be addressed by any mathemati-
cal model of limb development is the explanation of pattern formation during cartilage
differentiation (chondrogenesis). To be more precise, we seek to explain how the cellular
and molecular interactions occurring during the growth of the avian forelimb, for example,
lead to spatiotemporal differentiation of cartilage, such that the number of bone primordia
changes in time from onda(merus$, to two (radiusandulna) and to threedigits).

The aim of this paper is to analyze some features of a new model introduced by
Hentschel et al. [1]. The system of equations proposed in [1] has the following form:

dc

% = DV? —ke+ J(x,1), (1.2)
ac
3: = Davzca —kqcicq + J(}(ca» ¢i)R1+ Ja(cq, ci)Ro, (1-2)
aC[ 2
ar =DV —kycica +ky(ca, ci)R2, (1.3)
aRl 2 .
a5 DcelVR1 — diV(R1x Vp) +rR1(Req— R) + k21R2 — ki2(c, ca)R1,  (1.4)
8R2 2 .
ETE = DcellV°R2 — diV(R2x Vp) + rR2(Req— R) + k12(c, ca) Ry

— k21R2 — k22R>, (1.5)
aR/Z _ 2p/ ; / l /
0R3
FTi r3R3(R3eq— R3) + k23R5, (1.7)
dp ' ot
o =kp(R1+ R2) + kR — kep, (1.8)

wherex € 2 andr > 0 andR = R1 + R2 + R5. The equations above involve four dis-

tinct cell types R1, Rz, R, R3) that have been identified during the early stages of skeletal
development. These cells can be characterized by their respective receptors for the FGF
family of growth factors. In the paper we use the notat®ix, ) to describe the spa-
tiotemporal distribution ofR1 cells, with similar notations for the other cell types. In
addition we use the following notation: for the local concentration of the FGEs/);

for the concentration of fibronectin, which controls the increase in cell density (conden-
sation), a prerequisite for cartilage differentiati@iix, 7); for the activator of fibronectin
production, TGF8, ¢, (x, t); and for the associated inhibitaf,(x, t).

Although this paper is concerned with the mathematical analysis of this set of equations,
it is important to amplify some of the key biological points involved, both to set the model
in context, and to establish the importance of carrying out this analysis. A fuller account
of the biological mechanisms involved can be found in [1], so we will only highlight a
few key facts here. A schematic of this model is shown in Fig. 1. Results of some numer-
ical calculations for a reduced version of system (1.1)—(1.8) derived by separation of time
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Fig. 1. Schematic representation of the biochemical-genetic circuitry underlying the pattern forming instability
described in the model of Hentschel et al. [1], superimposed on a two-dimensional representation of a chicken
limb bud midway through development. The “apical,” “active,” and “frozen” zones com@inR, + R, andR3

cells, respectively. In detail of active zoﬂ% cells are shown to produce, in response to the positively autoregu-
latory activator (TGFB; curved arrows), a laterally-acting inhibitor (straight arrows) of the activator. Cells also
respond to activator by producing extracellular fibronectin, which promotes cell condensation. The thickness of
the developing limb extending from the back to front surfaces (dorso-ventral dimension) is collapsed to zero in
this simplified model. PD: proximo-distal; AP: antero-posterior. See [1] for additional details.

scales and gradient expansions are shown in [1]. Stability of different types of patterns is
demonstrated in Alber et al. [2].

Spatiotemporal cellular differentiation leading to early skeletal development takes place
in a domain (the “mesoblast”) consisting of loosely packed “mesenchymal” cells forming
the interior of the embryonic limb. The mesoblast is ensheathed by a thin layer of embry-
onic skin, the “ectoderm,” which secretes growth factors of the FGF family. At the distal
tip of the limb the ectoderm forms a raised ridge, the apical ectodermal ridge (AER), which
produces high levels of FGFs and is required for proximo-distal (i.e., oriented away from
the body) skeletal development. Just beneath the AER is the populatincgdls, which
exist in a state prior to both overt cartilage differentiation and precartilage condensation.
They are maintained in this state by the FGFs produced by the AER. Equation (1.1) thus
allows us to find the FGF concentratiorthat together with the TGIB-concentratiore,
is hypothesized to control the subsequent differentiatioRiofells into R cells [3] (see
Egs. (1.4) and (1.5))R2 cells produce a lateral inhibitor of TGF-activity and differen-
tiate irreversibly intoR’, cells, which produce fibronectin. The terminal cell type in this
pattern-forming process, cartilage, results from the irreversible transformatieh cells
into R3 cells. Cartilage cells do not diffuse, and thus form steep density gradients. These
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processes can be represented by the following graph:

kiz k
R1= Ry % R, -2 Rs,

k21
wherekz1, ko2 andkpz are constants anths = k12(c, ¢,). It is known [1] thatkia(c, ¢,)
decreases with and increases with, (see [1]). Beside to this, both the mobilB4( R>
and R5) cells andRs cells proliferate according to the logistic law. TGF-i.e., activa-
tor (A), is secreted by botl®, and R, cells. The molecular identity of the inhibitdris
unknown, but on the basis of experimental evidence it is assumed to be produced only
by R» cells [3]. Componen{ is assumed to inactivate componenby forming with it a
complexP. SinceP does not affect the considered process, it is not taken into account in
the model. Thus the kinetics df and/ can be described schematically by the graphs

Jr A ky ka
Ri— Ri+A: Ro— Ro+A: Ro—D Ry+1: A+1-%p.

Finally fibronectin,F, is secreted byr; and R cells at ratek; and byR/, cells at ratek;,
wherek;, <« k;, (see [1]):

/

k k k
Ri—% Ri+F, Rx—>Ry+F; R,— Ry+F.

Fibronectin decays at rake. It is fibronectin which is the actual adhesive component caus-
ing mesenchymal cell condensation, and its spatiotemporal distribution provides a template
for chondrogenic pattern formation [4—6]. Fibronectin is released by all mobile mesenchy-
mal cell types into the extracellular matrix (ECM) creating adhesive gradients up which
the cells can move. This velocity field effectively dragging fg R> and R;, cells into
regions of high fibronectin concentration is modeled by the convective ter®:giv o),
div(R2x V), div(R5x Vp) in Egs. (1.4)—(1.6). Herg is the coefficient describing specific
features of the cell-fibronectin interaction. Note that in Eq. (1.8) the fibronectin does not
itself diffuse but remains localized in the ECM where it was deposited. This fact together
with the presence of the above mentioned fibronectin haptotaxis terms is a source of se-
rious mathematical difficulties (see below). By adding Egs. (1.4)—(1.6) and neglecting the
reaction terms, we obtain an equation for the density of mobile &#sR1 + Rz + R5.
Supposing additionally that, = k, in Eq. (1.8) one can obtain a system of two equations
(for R andp), which can be treated as a variant of a system describing chemotaxis. This
fact suggests that solutions to our original system (1.1)—(1.8) may retain some properties
peculiar to the solutions of the relevant chemotaxis systems. In particular starting from ap-
propriate initial data they may lose smoothness and adtaingularities at some points of

£2 within a finite time. (See [7,8] for analytical proofs and [9] for numerical evidence; see
also [10] for the existence analysis of unbounded in time solutions. For results concerning
blow-up in different variants of chemotaxis equations see, e.g., [11-16].)

System (1.1)—(1.8) exhibits Turing-type instabilities, consistent with an earlier sugges-
tion that vertebrate limb development is governed by this class of mechanisms [6]. Recent
experiments [17,18] have provided evidence that chondrogenic patterning in cultures of
isolated limb cells self-organizes by a Turing-like process involving T8ad computa-
tional modeling has confirmed the plausibility of this mechanism [19]. In the system under
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consideration the prepattern of activator concentration is transferred to the subsystem de-
scribing the dynamics of moving cells by using the coefficigatc, c,) [1].

This paper is mainly concerned with the analysis of the conditions which guarantee
global existence in time of classical (smooth) solutions to the system of Egs. (1.1)—(1.8).
For x = const (Section 4), these conditions are shown to put strong restrictions either on
the magnitude of some parameters (e.g., on the valyeitself) or on the magnitude of
the initial data. The situation changes if we add an arbitrarily small diffusion $&ffp
to Eq. (1.8) (Section 5) and allow to be a function ofp. Then under one additional
assumption (integrability of (o)) we are able to prove the global existence of classical
solutions. However, the norms of the derivatives of the solutions might tend tehen
¢\, 0. The proofs are based on a transformation of dependent variables used in the papers
[20,21] and uses some of their results. The assumption of integrability of the coefficient
x (p) is in some sense similar to the modificationyointroduced in the papers [22,23].

2. Basic assumptions
In what follows we consider the initial boundary value problem for the system (1.1)—
(1.8):
2 CR", 3R eC*P, Be(0).

We assume that all the dependent variables excepkfand p satisfy so called no-flux
conditions. Thus on the boundady? the following conditions hold:

ad ad ac; oR oR R,
o, Za_o Zi_o ZM_o Z%2_o Z%2_y 2.1)
on on on on on on

wheren = n(x) is a unit outward normal t82 atx, whereas forx € £2 we have

c(x,0) =co(x), calx,0)=cqo(x), ci(x,0)=ciolx),

R1(x,0) = R1o(x), Ra2(x,0) = Roo(x), R5(x,0) = Rpp(x),

R3(x,0) = R3o(x), p(x,0) = po(x). (2.2)
We also require that the consistency conditions are satisfied, namely that

deo(x) 0 dcqaq(x) _0 dcip(x) _0

an(x)  on(x)  9n(x)
9Rw0() _ ORx() _ IR30™) _ o (2.3)
on(x) an(x) on(x)
forall x € 952.

We suppose that systefh.1)—(1.8)is written in a nondimensional form and that
Dcel = 1. This can be achieved by a proper scaling of the spatial variables. Our analy-
sis will be carried out under the following assumptions.

Assumption 1. k, D, Dy, D;, kq, 7, Req, 3, R3eq, ki, k},, ke and allk;; except forky, are
positive constants.
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Assumption 2. Let J (x, 1): £ x [0, 00) — [0, C/], C; > 0, be such that it€?f/*(2 x
(0,1)) norm is bounded independently of- 0. Let k1o, J2, Ju, kr 1R x R — [0, 00)

be bounded from above by the constahits J.1, J. andk s, respectively, and such that
their C1+#(K) norms, wherek ¢ R! x R is a compact set, are bounded from above by
constantLg .

Assumption 3. Suppose that:

(1) The functionsco(x), cq0, cio, R10, R20, Rbg, R3o and pg are of clasC?+#(£2) and
nonnegative inf2.
(2) dpo(x)/on(x) =0forx € 9s2.

Assumption 4. Let Jal, J, be identically equal to 0 for, > C, > 0 independently of;.
Letk(c;, cq) be identically equal to O for; > C; > 0 independently of,.

Biologically the last condition means that the production of secreted molecules stops
after their density attains certain threshold values.
For anyT > 0 let us denote

Qr =2 x(0,7T). (2.4)

As we mentioned, we do not impose any boundary conditiong f@and R3). However,
due to the last assumptignpreserves no-flux boundary conditions on the maximal interval
of existence of the solution. The following lemma will be used in later sections.

Lemma 1. Let Assumptio hold. Assume that for there exists a solution to sygted)—
(1.8), (2.2), (2.1)bounded inC#(£27) norm. Then

dp(x,1) _0
n(x)

forx €082,t €[0,T). Inthe same wayR3(x, t)/on(x) =0, if dR30(x)/dn(x) =0.

(2.5)

Proof. According to the assumptions of the lemma the normal derivaivegx,t)/
dn(x), dR2(x,1)/dn(x), dR,(x, t)/dn(x) are well defined and equal to O for ak [0, T),

x € 982, due to conditions (2.1) and (2.3). Al$p (x, 0)/9n(x) is well defined and equal
to 0. Differentiating both sides of Eq. (1.8) along the norm@l) we obtain an ordinary
differential equation

d [ dp op

—| = | = —ke—.

ot | on on
At each point on the boundary this equation can be viewed as an ordinary differential
equation fop (x, t)/dn(x) with the initial conditiondp (x, 0)/dn(x) = 0. Using the Gron-

wall's inequality we conclude the proof of the lemma. The proofRgrcan be carried out
in a similar way. O
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3. Main results

In what follows by a global solution we mean a solution definedfer (0, co). In
Section 4 we will analyze the cage= const> 0. Under Assumptions 1-4 we will prove
existence of a unique global solution of system (1.1)—(1.8) satisfying conditions (2.1) and
(2.2). This solution is nonnegative in every of its components. However, to obtain this
result we have to assume that eitheor the numbersk;, + k;)/ k. and || pollco(sz) are
sufficiently small. This result is stated in Theorem 1 and in explanatory Remark 3.

In Appendix A we consider system (1.1)—(1.8) with Eq. (1.8) replaced by

8_10 _ VZ I pl 1
ar = ¢ p +kp(R1+ R2) + kyR5 — kep. (3.1)
In this case Assumptions 1-4 and integrabilitydfmply the existence of a unique solution
globally in time. This result is stated in Theorem 4. Of course, as we mentioned in the
Introduction the norms of the derivatives of the solutions may terg twhene ~\ 0.

Methods of proof. As we mentioned above the main obstacle to applying the standard the-
ory of systems of parabolic equations is the presence of the terms proporticvap tio

the equations for the moving cells. To eliminate these terms we apply a transformation of
variables used in the papers [20] and [21]. The price we pay for it, namely additional non-
differential terms appearing in the equations, is of much less importance than the advantage
we gain. The next step consists in proving the existence of a solutianef@®, 7'), with

T > 0 sufficiently small, by using the contraction mapping theorem, as it is done in [20]
or [21]. This solution is locally unique. It is crucial that the valueTof for which the
contraction mapping theorem applies, depends only on appropriate Holder space norms
of the initial data (and the coefficients of the system). Thus, when we are able to obtain
a priori estimates of these norms, we can apply the same procedure once more, treating
the obtained solution as a new initial condition. In particular, if the a priori estimates do
not depend orf’, then repeating the process step by step, we can prove the existence of
a global (in time) solution. In obtaining a prio@i® bounds for the solutions, in several
instances we employed theorems of invariant region type. This is an additional element in
the proof, which in general follows the lines of the papers [20] and [21].

4. Existencetheorem

In this section we assume that= const> 0. The main result of the section is repre-
sented in the form of the following theorem.

Theorem 1. Let Assumption$—4 be satisfied. Ley = const> 0. Suppose that one of the
conditions holds

(19 y is sufficiently small,
(2% xlpoll oy < 1and the numbetk,, + k})/ k. is sufficiently small.
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Then for allt € (0, T), T € (0, o), there exists a unique solution of systéml)—(1.8)
satisfying conditiong2.1) and (2.2). This solution is nonnegative and every component

except forRz has its Cffﬂ’lw/z(fzr) norm bounded by a constant independent’of

whereasR3 has itsCS;tl(QT) norm bounded by a constant independerit of

Before proving this theorem we establish several preliminary results.

The main difficulty in obtaining a priori bounds for the solutions of system (1.1)—(1.8) is
the presence of the terms dRax V), div(R2x Vp) and diMR5x V p). To get rid of them
we will apply a nonlinear transformation &, R, and R, variables (see [20] and [21]).

Let

o
f(p) =9Xp(/x(8)d8>- (4.1)

0
For x = const we have simply (o (x)) = exp(xp(x)). Let us introduce new variables,
S2, 84 andS by using the following formulae:
R1 R> R’2
= 2= > =
o) fo" T fw)

After applying this transformation and settiflge = 1, the system of Eqgs. (1.1)—(1.8) has
the form

S1 S=5814+ 52+ S4. (4.2)

d
a—j — DV2c = —ke + J(x, 1), (4.3)
0R3
Fr r3R3(R3eq— R3) + ko3 f (p)Sa. (4.4)
36,1 2 1
W — DV, = —kycica + Ja (ca»ci) f(p)S1+ Jalca, i) f(p)S2, (45)
86‘,‘ 2
T D;Vec; = —kqcica +kr(ca,ci) f(p)S2, (4.6)
BS]_ 2
ETEE V2S1=xVp VS1+rSi(Req— f(0)S) + k2152

— k12(c, ca)S1 — xS18, (4.7)
9052
— = V282 =xVp - VSa+7S2(Req— f(p)S) +krz(e, ca)Sa

— k2182 — k2252 — x S28., (4.8)
0S54
Fra V2S4=xVp-VSa+rSa(Req— f(p)S) +ka2S2 — ko3Sa — x Sag,  (4.9)
ap
a7 = 8(51. 52, 54. p). (4.10)

whereg = kp, f (0)(S1+ S2) + k;, f (0)Sa — k.

Notice that the solution of the first equatiofx, r) (with 9¢/dn = 0 at the boundary)
exists globally inC?t#-1+8/2 class and is nonnegative for nonnegative initial val(gs0)
asJ(x,t) > 0. The second equation does not influence the rest of the system. Therefore,
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we can confine ourselves to the system containing only the last six equations. Thus we
consider the initial boundary value problem for the system (4.5)—(4.10). That is to say we
assume that fox € 962 and allz > 0 in the interval of solution existence the following
boundary conditions are satisfied:

dcgq(x,1) o, aci(x,t) —0,
on on

251(x, aS2(x, 084(x,
1.1 _ 0, 9820x. 1) _ 0, 9840x. 1) _ 0. (4.11)
on on an

Simultaneously, we require that fere £2,

Ca(-xao) ZCGO(-X)» Ci(xao) =Ci0(-x)7

S1(x,0) = S10(x),  S2(x,0) = S20(x),  Sa(x, 0) = Sa0(x),

p(x,0) = po(x) (4.12)
and that the consistency conditions are satisfied, i.e., farald $2,

dcao(x) dcio(x) 0

dn(x) — an(x)

8510(x) _ ’ 9520(x) _ ’ 98a0x) _ o (4.13)
an(x) an(x) on(x)

Remark 1. The boundary conditions fdf; follow from the boundary conditions (2.1) for
the initial problem, Assumption 3 and Lemma 1. Next, according to (4.2), we have

S10(x) f (po(x)) = R1o(x),  S20(x) f (po(x)) = Rao(x),
S10(x) f (po(x)) = R1o(x).

Assumption 5. x = const> 0.

Let

U =(cq,ci, S1, 82, 54, p). (4.14)
Let the vector on the right and left-hand sides of the system of Egs. (4.5)—(4.10) be denoted
by

@ U) = (P1(U), P2(U), P3(U), P4(U), Ps5(U), Pe(U))
and

L(U) = (L1(U), L2(U), L3(U), L4(U), Ls(U), L(U)),
respectively. Given vectdy, let P(U) be the solution of the system

L) =),

in the set2r = 2 x (0, T) for someT > 0 subject to the initial and boundary conditions
(4.12) and (4.11). Let us consider the mapping

U=PU).
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According to the Schauder estimates (see, e.g., [24,25]) fer0 sufficiently smallP is

a contractive mapping acting in the spac jﬂ (A+P) 2(QT). Thus from the contraction

mapping principle we infer thaP has a unique fixed point in the same space. Moreover,
this fixed point is of class

2+8,148/2
Cx,—'t—ﬁ +/3/ (QT)

and in fact is a solution of the system
LU =®(U).

One can prove thal depends only on th€§+ﬂ(9) norm of the initial data. The proof
may be carried out along the lines of [21, p. 1336]. It is based on the a priori estimates

in Cff;ﬂ’1+ﬂ/2(97) space (see Theorem IV.5.3 in [24]) and elementary theory of ordinary
differential equations. For the convenience of the reader we have sketched the proof in

Appendix A. It follows from being able to prove a priori that ti&t”*#/%(21) norm
of all the components o/ is bounded by a common constait which is independent
of T, that we can conclude, by applying the continuation method, that the solution exists
globally.
The crucial condition for this analysis is provided by the following assumption.

Assumption 6. Suppose that for alt € £2, 0 < c,0(x) < C, and 0< c;jo(x) < C; with
C, > C, andC; > C;. Suppose that there exists a positive soluiiSn Sy, S, p) to the
system of algebraic inequalities:

rS1(Req— 1) + k2152 — xky ST + xkeS1p <0,

rS2(Req— S2) + k1251 — xky S5 + xkeS2p <0,

rSa(Req— S4) + ko282 — xky, S5 + xkeSap <0,

k(S14 S2) + k}, Sa — ke p €Xp(—xp) <O, (4.15)
such that for alk € £2,

0< S10(x) <81, 0< So0(x) < 82, 0< Sap(x) < Sa, 0<pox) <p, (4.16)
andp < %
Remark 2. Conditions (4.15) are closely related to the invariant region established by
using sub- and supersolution method (see [26—28]). Namely, inequalities (4.15) and the
inequalities

—ka¢iCa + J3(Car i) [ (p)S1+ Ja(Cay i) [ (P)S2 <O,

—kaCica +kf(Ci,ca) f(p)S2<0, (4.17)

which, due to Assumption 4, hold for ad, € [0, C,], ¢; € [0,C;], S1 € [0, $1], Sz €

[0, 521, p € [0, 5] provide a sufficient condition for inequalities (B.3) in Appendix B to
hold for Y = [C,, C;, S1, S2, S4, 5. Obviously, fory = [0, 0,0, 0, 0, 0] inequalities (B.2)
are satisfied.



M. Alber et al. / J. Math. Anal. Appl. 308 (2004) 175-194 185

Remark 3. Notice that the set of parameters for which there exists a solution of (4.15) is
not empty. Obviously, fory = 0 and any nonnegative data (4.15) always has a solution.
Since the solution persists for sufficiently smalt- 0, we can takep = (\/7)*1. Then
pexp(—xp) = (ﬁ)*lexp(—\/y) can be made arbitrarily large, whereag = ,/x is
arbitrarily small. If x is not small some parameters can be still chosen to be small enough
to guarantee the existence of a global solution. To be more specificAefoo| co,) and

wy < 1. Lety € (1, 00). Consider the system of equations:

rS1(Req— 1) + k2152 — xkyS§ + vkeS1 =0,
rS2(Req— S2) + k1251 — Xk S5 + ykeS2 =0,
rSa(Req— Sa) + k2282 — xkjS3 + ykeSa =0, (4.18)
For fixed S4 = ¢ > 0 the set of points with positive coordinates satisfying the first and

the second equation can be written$as= B(y) + ,/B2(y) + D; S, wherej(i) =2
fori=1, @) =1fori =2, B(y) >0, D; >0 andB(y) grows withy. In the quarter
{S1 >0, S, > 0} these curves intersect at exactly one polity), S2(y)) with its coordi-
nates growing with/. The intersection of the set of points satisfying the third equation with
the plang{S4 = ¢} can be written in the formz2S2 = —(r Req+ yke) ¢ + (r + Xk,;)gz. By
changing; one notes that there exists exactly gne S4(y) > 0 for which the last straight
line passes through the pom‘Il(y) S»(y)). Consequently this system has a unique pos-
itive solutlon(Sl(y) So(y), Sa(y)) growing (componentwise) withr. We may choosg

so large thafS; > Sjo(x) forall x € £2,i = 1,2, 4. Letk, = max{kp, k;} and suppose that
ky/ k. is so small that the expressidh, (S1 + S2) + k’ Salexp(1) /k. is smaller thany —1.
Then forp = x 1, (51, S2, S4) satisfying (4.18), also satisfy (4.15) (wifh= x ~1). Thus,

we have proven that if || poll co o) < 1 andky,/ k. is sufficiently small then Assumption 6
is satisfied.

The next lemma will be crucial in our analysis.

Lemma 2. Suppose that Assumptiohs5hold. Then for all possiblé‘f;,l(.QT) solutions
of systen{4.5)—(4.10we have

0 g (Cllv Ci, Sl’ S2a S4a p)(-x7 t) < (Caa Cia Slv SZ’ 347 /3) (419)

Proof. Given functionp(x, t) (together withc(x, t)) the system (4.5)—(4.9) becomes a

system of five parabolic equations. According to Assumption 6 as lopgxas) < o, the

parallelepiped & (cg, ¢i, S1, 52, S4)(x, 1) < (Cq, Ci, S1, S2, S4) (see Remark 2 following

Assumption 6) is an invariant set. So solution (which is locally unique) must satisfy the

nonnegativity conditiore,(x,1) > 0, ¢;(x,t) > 0 andS;(x,t) > 0,i =1, 2,4. This fol-

lows from Theorem B.1 described in Appendix B and which was taken from [26]. Notice

that Theorem 1 from [28] cannot be applied directly to the system (4.5)—(4.9) because of

specific conditions assumed in the case of zero-flux boundary conditions (see [28, p. 435]).
The right-hand side of the equation 6§ is nonnegative forS; =0, 0< S < S

and 0< S4 < S4 independently of the value of. Note also that when the functignis
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treated as given and belongs at least{d”, then we can obviously find a priori bounds
for the functionsVs;, i = 1,2, 4, as well as foiVc,, V¢; by means of theilC® norms
(e.g., [24, Theorem V.7.2]). Now we can prove thdlk, ) > 0 in £27. Suppose the con-
trary, namely thap attains the minimal value i, to < 7, at a point(to, xo) and that
p(t0, x0) < 0. We should have the@/d¢) p (tp, x0) < 0. This leads to a contradiction since,
as S; (tg, xo) = 0 it follows from Eq. (4.10) thatd/at)p (tg, x0) > 0. Now, suppose that
p(x, 1) attains the maximal value if2,, at a poini(zg, xg) which coincides wittp, whereas

S; (10, x0) < S;. Again, this leads to a contradiction because it follows from Eq. (4.10) that
(0/0t)p(to, x0) < 0. O

Now we can formulate the first existence theorem.

Theorem 2. Let Assumption§—6hold. Then for anyi” > 0 there exists a unique solution
to the systen¥.5)—(4.10)%subject to the initial-boundary conditior4.12)and (4.11)such
that Cff,rﬁ’lJ”ﬁ/z(QT) norms of all the components are bounded by constants independent

of T.

Proof. According to the above remarks it is sufficient to prove a priori estimates for the

solution which are independent 6f From Lemma 2 we know that iftf@ﬁjﬁ“ﬂ/z(ﬂf)
solution to the considered problem exists then all of its last four components are bounded
in €% norm by constants independent®f It follows that

Floe,0) =1 [ fllcoge,) < Co 1Pl o, < Co, (4.20)

whered = (@3, @4, &5, dg) andCy is independent of . Therefore, conditions (4.4) from
[20] are satisfied. This results in following the estimates:

lcallcpprzg,y < K. leillcpprg,) < K. (4.21)
where K is independent of". To proceed, we have to show that similar estimates hold
for S;:

ISill c.pr2 g, < K. (4.22)
whereK is also independent df. This cane be done by applying the arguments used in
[20, p. 147] for each of the equations (4.7)—(4.9) separately.

The next step is to prove similar estimates for the funcjoand its derivative with
respect ta. For givenx, y € £2 let

px,t)—p(,1)
lx —yl#

Si(x, 1) = S;i(y, 1)

B —
, Sl.)(x’y)(x,t) = =P

p(’i,y)(x, )=

Then functionp(’i » satisfies the equation

I p
E’O(X,)’)(x’ 1)

= {xf (oo Cx. y. ) [kp (S2(y. ) + S2(y. ) + k Sa(y. )] — ke} ol ) (x. )
+ (ko (SE (1) + S5 0y) T K6 (1)} (D)), (4.23)
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which was obtained by using the identity — agbg = a(b — bg) + bo(a — ag) and notation

po(x,y, 1) =px, 1) +60(x,y,0)(p(y, 1) — p(x,1)),
wheref (x, y, t) € [0, 1]. For fixedx andy the last equation has the following structure:

=50+ o),

where, according to our previously obtained estimaggs) is bounded for alt € [0, T').
Thus, as long as(r) < 0 for allz € [0, T') we have that

|2(1)] < maxq{ K1}, (4.24)

where K1 depends only orC® norm of p and C#-#/2 norms of S; on £27. Therefore, it
is independent of". Here&min is the minimal value of the functioré| on the interval
[0, T). Let us analyze the conditiof(¢z) < 0. After denotingpy (x, y,t) = p we see that
the conditiont < O for all p € [0, p] is implied by the last condition from (4.15) if only

pf(=p)xf(p) <1l (4.25)

However, x = const andf (p) is an increasing function. Hence, condition (4.25) holds
for p € [0, p] if it holds for p = p. But for p = p it is equivalent to the last condition in
Assumption 6. Therefore, the fact tht) < 0 is independent of . Sincep(x, 1) is of C1
class with respect tothen it is of C#/? class as well. Thus by using the inequality (4.24)
we have that

lollepprzg,) < Ki. (4.26)
Now, let
ﬁ/Z o p(xv[)_p(x»f) . Sl(x [) S,'(x,‘[)
p(tr)(x’t) = —|t—‘E|ﬁ/2 s (tr)( ) |l—‘[|ﬁ/2
and
B/2 R SRS 168
pl‘(l‘[)( 1) := |l‘—1’|/3/2

The functionpt . T)(x) can be expressed in terms of the constapis, andk. and the

functionsp / (x) and Sl’g(/tzr (x) with absolute values bounded by constants independent
of the pomts(x 1), (x,t) € 27 andT itself (which follows from the previous estimates).
Next, the right-hand side of Eq. (4.23) is in fact equallép (x,7)/0t — dp(y,t)/0t]/

|x — y|#. We conclude from the estimates (4.26) and (4.22) that the absolute value of the
last function is also bounded by constants independent of the paints (x, ) € 2r

andT. We have thus proved that

< Ko. (4.27)

H ot Cﬁ ﬁ/Z(_QT)

By using (4.26) and (4.27) and method from Theorem 2.2 in [20] we can proveSthat
are bounded in the spaeg't?-#/2 by constants independent &f Using the obtained
estimates, similar calculations can be carried out for the components of the furi¢iions
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and d/dt(Vp) resulting in demonstration gf being bounded in the norm of the space
c1+P.8/2_ By applying the Schauder estimates to the system (4.7)—(4.9), and repeating the
above procedure to Eq. (4.10) we conclude the proof of the theorem.

Remark 4. Theorem 2 implies that there exists a global smooth solution of the system
(4.5)-(4.10). We also know that there exists a unique solution of Eq. (4.3). By using the
functionsS1(x, t), S2(x, 1), Sa(x, t) andp one can obtain the functior® (x, 1), R2(x, t)

and R5(x, t). The last function can be used for proving the existence of a unique solution
of Eq. (1.7) defined fotx, t) € 27 and for anyT € (0, co). Notice thatR3(x, ¢t) > 0. (For
sufficiently smallR3 > 0, d R3/9t > 0 due to the nonnegativity at’,.) Sincer,, is globally
bounded and there is a minus sign in front of the quadratic t@R§ R3(x, t) is bounded

from above by a positive constant.

Proof of Theorem 1. The proof follows from the proof of Theorem 2 and Remarks 3
and4. O

5. Case of nonzero diffusion coefficient of fibronectin

The aim of this section is to study global existence in time of solutions of the system
with the terme V2p added to the last equation. In what follows we assume thathich
now can depend op, is an integrable decreasing function of its argument. In contrast
to Section 4, we do not make any assumptions about the behavior of the coefficients of
the system and the magnitude of the initial data. On the other hand, under these weaker
conditions we cannot exclude in general case possibilig®bhorms of the derivatives of
the solutions tending tec ase N\ 0.

Consider system (1.1)—(1.7) together with the equation

dp

- =eV2p +kp(R1+ R2) + kj Ry — kep (5.1)
and initial-boundary conditions (2.2) and (2.1) and the boundary condition for
dp(x,1)
=0, 052. 5.2
on(x) Te (5-2)

As in Section 4, by using transformation (4.1)—(4.2) the analysis of the above system is
reduced to analyzing system (4.5)—(4.10) subject to the initial-boundary conditions (4.12)
and (4.11) with Eq. (4.10) replaced by the equation

0
a—’; — eV2p = g(S1, S2. Sa. p), (5.3)

whereg =k, f (0)(S1+ S2) + k;, f(0)Sa — kep.

Assumption 7. Let C2 5 x : R — [0, 0o) be a decreasing and integrable function with

8]

/X(s)ds=K.

0
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Obviously, the last assumption implies thgt (o) — 0 asp — oc.

As in Section 4 the global existence of bounded solutions is implied by the existence
of solutions to an algebraic system of inequalities corresponding to the system (4.15) and
(4.16). The crucial difference is the fact that now we do not require that a condition similar
to the conditiono < 1/x be satisfied. Namely, even without this condition we are able to
find an estimate for the Holder norm of the function

Lemma 3. Assume thay satisfies Assumptioh Then the system
rS1(Req— S1) + k2152 + Sl(J)p [~ X (0)ksSZ + x (p)S1kep] <O,
p€l0,p]

rS2(Req— S2) + k1251 + Sl(J)p [—x(p)ka§ + x(p)S2kep] <0,
p€l0,p]

rSa(Req— Sa) +kzaSo + Sup [~ X (ko SF + x (0)Sakep] <O,
p€l0,p]

o
ky(S1+ S2) + kj,Sa — kep exp(— / x(5) ds) <0 (5.4)
0

has a positive solutionSt, S», S4, p) such that for allx € £2,

0< S10(x) <81, 0< So0(x) < 82, 0< Sap(x) <S4, O<po(x)<p. (5.5)

Proof. Letn = Sup,cg o X (0)p. Then there exists a solutidh, Sz, S4 of the system

rS1(Req— S1) + k2152 + kcnS1 <0,
rS2(Req— S2) + k1251 + kenS2 < 0,
rS4(Req— S4) + k2252 + kcnSa < O, (5.6)

satisfying the first three of the conditions (5.5). Putting this solution into the fourth inequal-
ity in (5.4) results in the following condition:

o
ky(S1+ S2) + k;,§4 —kep exp(— / x(s) ds) <0.
0

However, exp— f(f x(8)ds) > exp(—K) and thus there exists finit{e* > 0 such that for
all p > p* this condition is satisfied and alga> pg(x) in £2. But any suclp satisfies also
the first three inequalities of system (5.4)@8(p) <n. O

Now we can prove the following theorem.

Theorem 3. Let Assumption$—4and7 hold. Then for any" > 0 there exists a unique so-
lution of the systertd.5)—(4.9)and (5.1) subject to the initial-boundary conditiorfg.12)

(4.11)and (5.2), such that thec>t#1*#/2(.) norms of all its components are bounded
by constants independent &f and every component has & norm independent of



190 M. Alber et al. / J. Math. Anal. Appl. 308 (2004) 175-194

andT. Moreover, for anyy € (0, 1) theCij””’(QT) norms of the functions, andc; are
independent of.

Proof. The proof is similar to the proof of the Theorem 2 and involves contraction map-

ping theorem in the spa 1jﬂ’(1+ﬁ)/2(527) for sufficiently smallT > 0. The difference

is that this time we can estimate théf,”ﬁ’(”ﬂ)/z(QT) norm of the functiono (globally

in time) by the Schauder estimates (see, e.g., [24,25]) only by «&fnigounds for the
functionsc,, ¢;, S1, S2 and S4. Of course this norm may grow with 0. On the other
hand, for anyy € (0, 1) the norms of the functions, andc; depend only on th€® norms

of the right-hand sides of Egs. (4.5) and (4.6). These norms are independentof

Theorem 3 and Remark 4 imply existence of the solution of the initial value problem.

Theorem 4. Let Assumption$—4be satisfied. Ley be positive, decreasing and integrable
function of p of C2 class. Then for every > 0 there exists a unique classical solution
of the systenfl.1)—(1.7) (5.1) satisfying conditiong2.1), (5.2) and (2.2) defined for all
t€(0,T), T € (0, 00). This solution is nonnegative and hasdt& norm bounded by a con-
stant independent afand 7. And every component except #f has itscfjﬂ’l’Lﬂ/z(QT)
norm bounded by a constant independerit @ (0, oo). Moreover, for anyy € (0, 1), the

Cf{”’(QT) norms of the functions, andc¢; are independent of.

6. Conclusions

In this paper we prove some existence theorems for the system (1.1)—(1.8). In particu-
lar, we prove that under certain conditions on the coefficients of the system or on the initial
data a unique classical solution exists globally in time. The condition of sufficiently small
initial value for p is biologically plausible, because the earliest cells in the developing limb
(R1 cells) secrete fibronectin only at relatively a small rgiex k;,. The assumptions that
the numberg or maxkp, k;,}/kc are sufficiently small seem to be rather restrictive, how-
ever. At present there is a lack of precise experimental data to confirm their validity. We
have not proved that the conditions from Theorem 1 are necessary for the global existence
of smooth solutions. As we mentioned the possibility of blow-up of the solutions is sug-
gested by [7] and [8], though the corresponding analysis would be much more complicated
in the case of system (1.1)—(1.8).

We also show that by introducing arbitrarily small diffusion of fibronectin, we can re-
duce significantly the number of conditions necessary for the global existence of smooth
solutions. Again while fibronectin diffusion in the ECM will certainly be slow because of
its size and adhesive character, the assumption of a small finite diffusibility of fibronectin
is by no means excluded by the biological evidence. For example, the domain of action
of fibronectin spreads from its sites of initial deposition by conversion of its initially com-
pact structure to a more extended structure [32]. Our dynamical analysis suggests that this
important property of fibronectin matrix assembly may be a key aspect of developmental
stability. The parabolic perturbation of Eq. (1.8) is thus a reasonable modification of the
initial model.
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Of course this is only the first step of the analysis. We do not examine large time asymp-
totics of the solutions, which in fact determines the final pattern in the considered model.
Another important question concerns the region of validity of our model equations. It is
clear that at high cellular densities, the use of PDEs to describe embryological develop-
ment (which involves discrete multicellular processes) must break down. This breakdown
will occur at scales of the order of a few cell diameters (i.e., on a linear scal€ahit0
crons), and to study events at this scale we will need to use discrete mathematical methods
such as cellular automata (see [19]). Finally, in order to accurately describe the process
of vertebrate limb formation one needs to take into account its growth, that is to say, one
needs to consider a free boundary problem involving PDEs in a complex evolving domain
whose growth and shape depend on the solution of these PDEs (cf., e.g., [29-31]).
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Appendix A. Propertiesof the operator P

P is a well-defined mapping from the spat¢ = Clﬂs (Hﬂ)/z((h) to itself. The norm

1UI o¢ in this space is given by the sum 6f ;*" (”’3)/2(!2T) norms ofU;. Note that
1Uill 1., = XSGU(EH Ui(x, ) Hcr(1+ﬁ>/2((oj)) VUil sz g, (A1)

(See Section 1.1 in [24].) Ldl/p denote the vector of initial functions and consider a closed
ball B in the considered space defined By= {U € M: ||U — Up||pq < 1}. Let U € B.

Then from the Schauder estimates (see Theorem 1V.5.3 in [24]) and elementary theory of
ordinary differential equations we know thatsas> 0,

UG5 = UoO) cass ) — O (A.2)

From the same estimates and the definition of the Holder norms (Section 1.1 in [24]) we
know that

” @)
VUG, 9| cxHhI2

< Kj, H DEU(X, ')”C;s/z < K>,

((0,1))

(©.1)) < K3, (A.3)
independently ofc € £2. The constants(; can be chosen independent@fe B. From
(A.2) and the first inequality in (A.3) we infer that the first term at the right-hand side
of (A.1) tends to zero fofl — 0 asT/?~#/2, From (A.2) and the second inequality in
(A-3) we infer that|U (-, 1) — Uo()ll s+, tends to zero fof” — 0 asT#/2, Finally from

(A.2) and the third inequality (A.3) we infer thgivU (x, -) — VUo(x)||C,3/2 (0.1 tends
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to zero forT — 0 asTY2. ConsequentlyjU — Ug|| o4 behaves likek4 79, § > 0, where
the constantk, depends on th€?+#1+8/2 norms of Uy and the regions2. It follows
that for T > 0 sufficiently smallP acts fromB to B. Using the fact thatd is of class
C1*# and proceeding in the same way we can easily prove|tRat/>) — P(U1)|| pq <
TVKs||U2 — U1|| pm, for all U1, U2 € B with v > 0. Hence forT > 0 sufficiently small the
mapping is a contraction fror to B.

Appendix B. Existence theorem via sub and super solution method

We consider a system of parabolic equations of the form

Li(x,0uj = fi(x,t,u,Vu), (x,0)€ 27, T >0,

8 .

M _0, xean,

on

i (x, 0) = wio(x), ®B.1)

where27 :=2 x (0,T7),i €{1,...,m > 1}, 2 Cc R" is an open bounded domain with
302 of C%t# class, € (0,1), n = n(x) is a unit outward normal t6£2 atx, andu;g €
C%t8(2) satisfies compatibility conditioAu;o/dn = 0 on 852. The parabolic operators
have the following form:

L= 8+D( 1)V2
i = a9 i (X, .

We assume that for alle {1, ..., m}, all (x, 1) € @, D; is of classC! and
co>v=2Dix,t)>2u>0

for all (x, 1) € 7. Above, for simplicity we denoted
= 27.

We assume also thgt : 7 x R™ x R™ — R™ are locally Holder continuous with expo-
nentsg, /2, B, B, respectively.

Assumption B.1. For anyC??* solution to system (B.1) with it€® norm onsz bounded
by a constanty < oo we have an a priori estimate

IVull < W),

whereW : R — R is a continuous function depending on the coefficients of system (B.1)
andg2, but not depending on the solutian

Now, let y,Y:7 — R™, be given, withy,Y € C?Y(#), y = (y1,.... ym), ¥ =
(Y1,...,Y,). Assume thaty(x,t) < Y(x,t) componentwise orr. Let [y, Y] :={u €
R™: yi(x,t) <u; <Yi(x,t), (x,1) € }. We have the following invariance principle.

Theorem B.1 (see [26]) Assume that for alt € 9£2,i € {1, ..., m},
Bi o i,
on on
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andthatforall(x,r) em, y; <u; <Y, j#k, k={1,...,m},

Li(x,)yk — fe(x,t,u1, .oy Uk—1, Vi Uk1y -« » Ums VUL, ..., VUg_1, VY,
Vugs1, ..., Vuy) =0, (B.2)

Li(x,0)Yr — fi(x,t,u1, ..., ug—1, Vi, U1, - -+ » U, VUL, ..., VUg_1, VY,
Vugs1, ..., Vuy) <0. (B.3)

Then systen(B.1) has at least one solution: 7 — R™ such that itsCf;,l(n) norm is
bounded and its values are containedjn Y] for all 7 € [0, T'].
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