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Abstract
The stability of Turing patterns in an n-dimensional cube (0, π)n is studied,
where n � 2. It is shown by using a generalization of a classical result
of Ermentrout concerning spots and stripes in two dimensions that under
appropriate assumptions only sheet-like or nodule-like structures can be stable
in an n-dimensional cube. Other patterns can also be stable in regions
comprising products of lower-dimensional cubes and intervals of appropriate
length. Stability results are applied to a new model of skeletal pattern formation
in the vertebrate limb.

PACS numbers: 87.10.+e, 87.18.La, 87.18.Hf

Mathematics Subject Classification: 92C15, 92C37, 37N25, 46N60

1. Introduction

Reaction–diffusion systems, in which self-organizing instabilities arising from the coupling
of chemical reactions with diffusion lead to nonuniform patterns of chemical concentration,
have received much attention from mathematicians and physicists since Turing first analysed
them half a century ago [1] (see, amongst others, [2] and [3] for a review). While theoretical
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Figure 1. Density plots of u(x, y, z) = cos x in the cube [0, π ]3 with cross-sections at z = π/2,
y = π/2 and x = π/2, respectively. We call this pattern a (three-dimensional) 1

2 -sheet.

applications of reaction–diffusion models to various problems in biological pattern formation
followed upon Turing’s paper [4–7], serious consideration of this class of mechanisms by
biologists only began once a reaction–diffusion mechanism was shown unambiguously to
underlie pattern formation in an experimental (chemical) system [8, 9].

In [10], a new reaction–diffusion model was introduced to explain the process of
precartilage condensation in the embryonic chick limb. The proposed mechanism models the
first stage in the development of the limb skeletal pattern. This ‘bare bones’ model consists of a
system of three equations that describe the spatiotemporal distribution of two morphogens and
the density of precartilage (‘mesenchymal’) cells that respond to these heterogeneous
morphogen distributions via haptotaxis (see [10] for a review of the biology). These equations
are capable of producing patterns via a Turing bifurcation, a mechanism by which some
components of an initial distribution corresponding to unstable modes of a system linearized
around a homogeneous steady state undergo exponential growth, whereas all other modes
decay exponentially. It is thus that patterns emerge from initially small perturbations of a
spatially homogeneous base state.

In nonlinear systems, the exponential growth is eventually slowed down by higher order
terms. Typically, the system then reaches a steady state. It is therefore of interest to study the
stability of these patterns under small perturbations, as all steady states corresponding to the
patterns observed in experiments must be stable.

In [11], it is shown that patterns obtained close to a Turing-type instability of a reaction–
diffusion system defined in a two-dimensional square can be of just two types, stripes or
spots. General criteria are also given for the stability of reaction–diffusion patterns in a two-
dimensional square (subject to no-flux boundary conditions) near a spatially homogeneous
steady state. This result is obtained using the Lyapunov–Schmidt reduction method and group
theoretic considerations (see [12] and [13] ). For n = 3 a similar result was obtained in [16].
The approach of [16] is different from the one used in [11]. It is based on purely group theoretic
considerations and it does not take into account the specific form of the system of equations.

In biological applications one mostly deals with three-dimensional structures. The
structures we are interested in can be described by their cross-sections perpendicular to
the limb’s long axis. We distinguish between sheet-like, bar-like and nodule-like structures
(see figures 1–3). Sheet-like structures have two stripe-like cross-sections and one unpatterned
cross-section. Bar-like structures have two stripe-like cross-sections and one spot-like
cross-section, whereas nodule-like patterns have spot-like cross-sections in all dimensions.

In modelling skeletal pattern formation during vertebrate embryogenesis, the bones of the
vertebrate limb can be identified with three-dimensional bars or nodules. For example, the
avian forelimb skeletal elements can be roughly decomposed (starting at the proximal shoulder
and continuing to the distal tip of the wing) as consisting of one skeletal bar (the ‘humerus’)
followed by two skeletal bars (the ‘radius’ and ‘ulna’) followed by the nodule-like carpal
and tarsal structures of the wrist and ankle and finally a number of segmented bar-like
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Figure 2. Density plots of u(x, y, z) = cos x + cos y in the cube [0, π ]3 with cross-sections at
z = π/2, y = π/2 and x = π/2, respectively. We call this pattern a (three-dimensional) 1

2 -bar.
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Figure 3. Density plots of u(x, y, z) = cos x + cos y + cos z in the cube [0, π ]3 with cross-sections
at z = π/2, y = π/2 and x = π/2, respectively. We call this pattern a (three-dimensional)
1
2 -nodule.

structures (the ‘digits’). A complete analysis of the conditions under which each of these
three-dimensional patterns is stable is therefore of great importance.

This paper focuses on obtaining explicit conditions for stability of patterns obtained via a
Turing bifurcation phenomenon in three or more dimensions, and their application to a problem
of precartilage condensation in the avian limb within the context of the model proposed in [10].
This model in its simplest form couples a Turing-like pattern forming a reaction–diffusion
system to a mechanism for cellular differentiation (see section 5). The differentiated cells can
release an insoluble substrate adhesive molecule (‘fibronectin’) into the extracellular matrix
that results in cell migration via haptotaxis up the fibronectin gradients.

We derive these stability conditions by extending the method from [11], and develop
stability criteria for patterns in n-dimensional cubes, where n � 2, for a general system of
reaction–diffusion equations. This method takes into account the specific form of the equations.
The scalar parameters appearing in the stability conditions obtained are explicitly determined
by the coefficients of the system. We are thus able to control the stability of patterns by altering
these coefficients. More specifically, they can be expressed using second and third order terms
in the Taylor expansion around the steady state. Therefore, we can ensure stability of patterns
by adding appropriate terms of order 2 or 3. The effects of second order terms are difficult to
study analytically as they result in complicated expressions. On the other hand, addition of
third order terms does not significantly complicate the analysis.

We show that only n-dimensional nodules or n-dimensional sheets can be stable in an
n-dimensional cube although not at the same time. We also show that other patterns such
as bars can be stable in any region that is a Cartesian product of an n − 1-dimensional cube
and an interval of sufficiently small length. This is of particular significance in modelling the
vertebrate limb, where the main skeletal structures are bars (cf remark 2.2).

Finally, we apply our results to the three-dimensional model of vertebrate skeletal
development [10]. Since our method is system-specific, we are able to investigate the stability
of patterns by changing the rate at which the cells produce fibronectin, the extracellular matrix
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molecule that provides an adhesive substratum for the cells. We show that under certain
conditions there exists a threshold for fibronectin production that separates stable sheets from
stable nodules. This is a very encouraging result for the validity of the model since a similar
phenomenon has been observed experimentally in cultures of cells derived from embryonic
chicken wings and legs. That is, levels of fibronectin produced by cells derived in chicken
wing buds are lower than in leg buds. Wing condensations in culture are broad and flat
(i.e. sheet-like) whereas leg condensations are compact and spherical (i.e. nodule-like) [18].

The theoretical results described in this paper have been used in numerical implementation
of two- and three-dimensional multiscale models of vertebrate limb development in [19, 20].

This paper is organized as follows. In section 2 we describe our approach to analysing
Turing bifurcations in an n-dimensional cube. We also indicate how to treat the more general
case of a parallelepiped. Section 3 contains stability results. In section 4 we investigate the
effect of third order terms. This is followed in section 5 by an application of our results to the
model of the vertebrate limb. Finally, we conclude with a discussion of the implications of our
results for the patterning observed in the developing limb.

2. General method

As mentioned in section 1 our method follows the general strategy of [11]. It is based on
representing the solution u as well as the bifurcation parameter λ̃ in the form of a power series
in terms of a small parameter ε. Substitution into the considered system, comparison of terms
for the same powers of ε and application of the Fredholm alternative procedure result in a set
of relations from which stability conditions are derived.

2.1. Turing bifurcation

Consider a system of nonlinear equations of reaction–diffusion type on an n-dimensional
domain R

n (n � 2),

−D∇2U = F(U, λ̃). (2.1)

Here U = (U1, . . . , Um) : � → R
m (m � 2), and F = (F1, . . . , Fm), m � 2, is a family of

sufficiently smooth vector-valued mappings that depend on a bifurcation parameter λ̃ ∈ R
1.

D is a constant m × m matrix whose m eigenvalues are all positive.

Assumption 1. There exists a constant steady state U0 of system (2.1). To be more
precise, F(U0, λ̃) = 0 for all λ̃. Moreover, this steady state is stable with respect to
spatially homogeneous pertubations, that is, all the eigenvalues of the linearization matrix
∂F/∂u(U0, 0) have negative real parts.

Let us denote

A = ∂F
∂U

(U0, 0), u = U − U0.

Then in the vicinity of U0, system (2.1) can be written as

(−A − D∇2)u = Q(u, u) + C(u, u, u) + λ̃Bu + h.o.t., (2.2)

where Q(u, u) and C(u, u, u) are second and third order terms in the Taylor series of F around
U = U0. The operator B can have a very general form. In this paper, we assume that

B = B1 + B2∇2,

where B1 and B2 are constant m × m matrices.
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In the case of n = 2 a general form of system (2.2) was analysed in [11]. In this paper,
we consider equation (2.2) in the n-dimensional cube

� = (0, π)n, n � 2.

Assume that U satisfies no-flux boundary conditions 5, i.e.

∂U
∂n

(x1, . . . , xn) = 0 for (x1, . . . , xn) ∈ ∂�. (2.3)

Here n is an outward normal vector at the boundary ∂�. (Biologically, equation (2.3) means
that there is no boundary leakage. This assumption is often plausible in mathematical models.)
Notice that u satisfies the same boundary conditions

∂u

∂n
(x1, . . . , xn) = 0 for (x1, . . . , xn) ∈ ∂�. (2.4)

Assumption 2. The trivial solution u = 0 to problems (2.2) and (2.4) is stable for λ̃ < 0 and
unstable for λ̃ > 0. In other words, the following operator

u �→ D∇2u + Au + λ̃Bu, (2.5)

where u satisfies (2.4), has only negative eigenvalues for λ̃ < 0, at least one positive eigenvalue
for λ̃ > 0 and zero eigenvalue for λ̃ = 0.

In the case considered below, the zero eigenvalue is not simple and its geometric
multiplicity is equal to n (see lemma 1).

As a consequence of assumption 2, the operator in (2.5) has a nontrivial kernel for λ̃ = 0.
Therefore, there is a nontrivial function u0 such that Au0 + D∇2u0 = 0.

The family of functions
∏

i cos(kixi), where ki are nonnegative integers, forms a basis of
the space of functions in � that satisfy zero-flux boundary conditions. (This follows from the
Stone–Weierstrass theorem; see, e.g., [17].) Thus, we can write u0 in the form

u0 =
∑

k

a k
∏

i=1,...,n

cos(kixi) = 0,

where k = (k1, . . . , kn). Consequently, the following relation must be satisfied:∑
k

(−k2D + A)a kψk(x) = 0,

where ψk(x) = ∏
i=1,...,n cos(kixi). Now, as the functions ψ k are linearly independent in �,

then for every k we have that

(−k2D + A)a k = 0. (2.6)

A and D are m×m matrices and, therefore, in general, this equation can have nonunique linearly
independent eigenvalue pairs (k2, a k). However, in what follows we make an assumption that
in (2.6) a k �= 0 only when k2 = 1. We discuss below to what extent this assumption constitutes
a restriction on the general case.

5 Note that the normal component of the flux Ji of the term ui (i = 1, . . . , m) at the point (x1, . . . , xn) ∈ δ� has the
form

Ji · n =

−

∑
j=1,...,m

Dij∇Uj


 · n = −

∑
j=1,...,m

Dij

∂Uj

∂n
(x1, . . . , xn).

Hence, by assuming boundary conditions Ji · n = 0, i = 1, . . . , m, and matrix D being invertible, we obtain
expression (2.3). We call these expressions no-flux boundary conditions.



130 M Alber et al

Assumption 3. The matrix (A−D) has a unique eigenvalue equal to 0 with the corresponding
eigenvector e. All other (m−1) eigenvalues have negative real parts. Moreover, for any k2 �= 1,
the matrix A − k2D has only negative eigenvalues.

The following lemma follows from this last assumption.

Lemma 1. Functions u0� = e cos x�, � = 1, . . . , n, span space of solutions to the equation
Au0 + D∇2u0 = 0 in the cube � = (0, π)n. In other words, operator (2.5) has an
n-dimensional kernel for λ̃ = 0.

Proof. If k2 = 1, then due to (2.6) a k must be a multiple of e, so that the general solution to
the equation Au0 + D∇2u0 = 0 has the form

∑
�=1,...,n a�e cos(x�). This concludes the proof

of the lemma.

We are interested in the solutions (u, λ̃) to the steady state equation (2.2) bifurcating from
the constant steady state at λ̃ = 0. Suppose that this bifurcating solution is parametrized by ε;
that is, we consider a solution (uε, λε) to the equation

(A + D∇2)uεQ(uε, uε) + C(uε, uε, u) + λ̃εBuε = 0. (2.7)

We represent (uε, λε) in the form of power series in terms of ε:

uε = εu0 + ε2u1 + · · · , (2.8)

λ̃ε = ε2λ + · · · . (2.9)

After comparing first order terms in ε in equation (2.7) and using lemma 1 we obtain that

u0(x1, . . . , xn) = (s1 cos x1 + · · · + sn cos xn)e.

So up to the first order terms, the patterns can be generated by using linear combinations of
the elementary patterns cos xi .

We call a special pattern corresponding to the case when s1 = · · · = sn an n-dimensional
nodule. (It looks like a ‘blob’ in one corner of the cube.) Another special pattern corresponds
to the case when si �= 0 for some i = 1, . . . , n, but s� = 0 for � �= i. We call such a pattern
an n-dimensional 1

2 -sheet pattern.
Before we present our result on the stability of these patterns, which generalizes the result

of Ermentrout [11] in two dimensions, we discuss the case of a more general domain.

2.2. Case of a general domain

In this section, we make three suggestions on how our assumptions can be extended leading
to analysis of more general patterns as well as more general domains.

Aspect ratios. Our assumptions may be generalized to incorporate also many-sheet patterns.
One can achieve this simply by considering the system in a different domain. For example, if
we are interested in Mi-half-sheet elementary patterns in xi , where M1, . . . Mn are nonnegative
integers, then it suffices to consider the system in the parallelepiped

�̃ =
n∏

i=1

(0, Miπ). (2.10)

In this general case, a basis for the family of functions that satisfy no-flux boundary conditions
is given by the functions

∏
i cos(mixi/Mi), where m1, . . . , mn are nonnegative integers. If

the dimension of the kernel is to be equal to n as in lemma 1, we must impose an additional
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condition in accordance with the condition
∑

k2
i = 1. Namely, we allow only sets of positive

integers M1, . . . , Mn that satisfy the following condition:

If m1, . . . , mn are nonnegative integers such that(
m1

M1

)2

+

(
m2

M2

)2

+ · · · +

(
mn

Mn

)2

= 1, (2.11)

then there is an index i∗ such that mi∗ = Mi∗ and mi = 0 for i �= i∗.

For example, in dimensions n = 2 and n = 3, this condition is satisfied for the cubes
�̃ = (0, 2π)n. (This is the case when M1 = M2 = 2 and M3 = 2.) Such a domain, for
n = 2, was considered in [11]. However, note that for dimension n � 4, the n-dimensional
cube (0, 2π)n does not satisfy this condition.

Dimensional reduction. Let �̃ be an n-dimensional parallelepiped as before with {Mi}nj=1
satisfying condition (2.11). Suppose now that α is an irrational number and consider
equation (2.2) in the (n + 1)-dimensional parallelepiped �̃′ = �̃ × (0, απ). A basis of
the functions satisfying no-flux conditions on �̃′ now consists of

cos
(mn+1xn+1

α

) n∏
i=1

cos

(
mixi

Mi

)
.

Lemma 1 still holds in �̃′ and stable patterns are still formed by linear combinations of cos(xi),
i = 1, . . . , n. This remains true for any positive number α < 1 (not just irrational ones).

This also indicates that analysis of patterns on a square � can be extended to a
parallelepiped with base � and small height h. For instance, a single spot in the centre of the
square � corresponds to a bar of height h in the parallelepiped. We note that in the developing
skeleton of the vertebrate limb, a three-dimensional case in which the main elements are bars,
the height in the dorsoventral (back to front; e.g. back of the hand to palm) dimension is always
small relative to the other two dimensions.

New scales. Finally, note that rescaling the domain � is equivalent to rescaling function F(u)

in (2.2). For example, consider system (2.2) in the cube (0, π)n. Introducing the new scaling
x ′ = √

gx is equivalent to modification of the expression(
− 1

g
A − D∇2

x ′

)
u = 1

g
(Q(u, u) + C(u, u, u)) + λ̃B′u + h.o.t.

considered in the cube �′ = (0,
√

gπ)n where ∇2
x ′ denotes the Laplacian with respect to x ′.

Here we incorporated the factor 1/g in front of B′u into λ̃.

3. Stability of patterns

In this section, we prove stability of the bifurcating solutions (2.8). Stability is studied by
comparing two parameters a and b associated with the system. We follow Ermentrout [11] in
introducing the following definitions.

Let f be an eigenvector satisfying

f(A − D) = 0, f · e = 1.

Also let

L0 = −A, L2 = −A + 2D, L4 = −A + 4D.
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These matrices are invertible according to the uniqueness of k2 satisfying assumption 2. Define
the following constants

α0 = fQ(e, L−1
0 Q(e, e)), α4 = fQ(e, L−1

4 Q(e, e)),

α2 = 4fQ(e, L−1
2 Q(e, e)), β = fC(e, e, e), µ = f · Be.

(3.12)

Here Q and C are the quadratic and cubic terms as in (2.2), and B is a matrix determined as
follows: B(e cos x�) = Be cos x�. Finally, we set

a = α0 +
1

2
α4 +

3

4
β, b = α0 +

1

2
α2 +

3

2
β. (3.13)

Now we can introduce the following generalization of a theorem by Ermentrout [11].

Theorem 1. Consider the bifurcating solution

uε(x) = ε(s1 cos x1 + · · · + sn cos xn)e + ε2u1 + · · ·
to equation (2.7) as in (2.8).

1. There is an integer p (1 � p � n) such that

|s1| = · · · = |sp| �= 0, sp+1 = · · · = sn = 0

(after a permutation of the indices of x1, . . . , xn, if necessary).
2. The stability of uε is determined as follows:

(a) p = 1: uε is stable iff b < a < 0,
(b) p = n: uε is stable iff a < min{b, −(n − 1)b},
(c) 1 < p < n: uε is always unstable.

Note that for p = 1 the density plot of uε is an n-dimensional 1
2 -sheet. For p = n and

s1 = · · · = sn, the contour plot is a single n-dimensional nodule (see figures 1 and 3 for the
case n = 3). The theorem asserts that only n-dimensional sheets or nodules can be stable, but
never for the same set of parameters. No other pattern can be stable.

Proof. We first derive the reduced bifurcation equations. Consider the equation

(A + D∇2)uε + Q(uε, uε) + C(uε, uε, uε) + λ̃εBuε = 0. (3.14)

First order terms in ε yield that (A + D∇2)u0 = 0, from which it follows that

u0 = (s1 cos x1 + · · · + sn cos xn)e.

Comparison of second order terms in ε results in the following equation:

(A + D∇2)u1 = −Q(u0, u0) = 1

2
Q(e, e)


∑

i

s2
i (1 + cos(2xi)) +

∑
i �=j

sisj cos xi cos xj


 ,

which yields that

u1 =
∑
i �=j

sisj cos xi cos xjL
−1
2 Q(e, e) +

1

2

∑
i

s2
i L

−1
0 Q(e, e) +

1

2

∑
i

s2
i cos(2xi)L

−1
4 Q(e, e).

Finally, third order terms in ε in (3.14) yield

(A + D∇2)u2 + 2Q(u0, u1) + C(u0, u0, u0) + λBu0 = 0.

Multiply this equation by cos x� f T on the left for � = 1, . . . , n and integrate over � = [0, π ]n.
This results in the following system of n reduced equations:

0 = s�


µλ + as2

� + b
∑
i �=�

s2
i


 , � = 1, . . . , n. (3.15)
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Certain (n − p) of the s� are zero, where 1 � p � n. Without loss of generality we assume
that sp+1 = · · · = sn = 0. The first p coefficients s� satisfy



a b b · · · b

b a
. . .

. . .
...

b
. . .

. . .
. . . b

...
. . .

. . . a b

b · · · b b a







s2
1
...

s2
p


 = −µλ




1
...

1


 .

It follows that s2
1 = · · · = s2

p ≡ s2 and s2 satisfies [a + (p −1)b]s2 = −µλ. The Jacobian
of the right-hand side of the reduced bifurcation system (3.15) evaluated at s1, . . . , sn with
s2

1 = · · · s2
p = s2, sp+1 = · · · = sn = 0, is equivalent to the matrix

Jac =
(

Ap 0
0 Bp

)

with the submatrices

Ap = 2(a − b)s2
Ip + 2bs21p, Bp = (µλ + bps2)In−p.

Here Ip denotes the p × p identity matrix and 1p denotes the p × p matrix with unit entries.
Note that 1p has eigenvalues p and 0 with multiplicities 1 and (p − 1), respectively.

The eigenvalues λ1, . . . , λn of Jac are as follows:

λ1 = 2(a − b)s2 + 2pbs2 = −2µλ,

λ2 = · · · = λp = 2(a − b)s2,

λp+1 = · · · = λn = λµ + bps2 = −s2(a − b).

According to a theorem by Sattinger ([13], theorem 4.3, p 82), solution uε is stable if and only
if all the eigenvalues λi , i = 1, . . . , n, are negative. For p = 1 this condition is equivalent to
a < 0 and a > b. For p = n we get a < −(n − 1)b and a < b. For 1 < p < n, one gets the
contradicting conditions a < b and a > b. This completes the proof. �

4. Influence of third order terms on the stability

In what follows we study how a given system can be altered in order to produce stable nodules
or sheets. Note that the expressions for the parameters a and b from (3.13), which are used
to determine stability, depend on both second and third order terms. The fact that the stability
of patterns is affected not only by second order terms but equally by third order terms may
seem somewhat surprising at first. An analysis of the proof of theorem 1 shows how third
order terms come into play. That is, the power series of the bifurcation parameter λ̃ starts
with ε2 (see equation (2.9)). Hence, one needs to compare terms up to third order in ε in
equation (3.14) to arrive at the reduced equations (3.15) involving λ.

We ensure stability of patterns by adding appropriate terms of order 2 or 3. The effects of
second order terms are hard to study analytically because they result in complicated expressions.
On the other hand, addition of third order terms does not result in complications in the analysis.
Also changing the third order terms affects the solution very little if it is close to the bifurcating
constant state.

We present our results in the form of the following two theorems. Theorem 2 says that
any system can be modified by adding third order terms in such a way that it would have stable
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n-dimensional sheets. On the other hand, theorem 3 states that only those systems that satisfy
condition 2a − b < 0 can be modified to have stable nodules.

Theorem 2. Consider system (2.2) with Turing instability for k2 = 1 around a spatially
homogeneous steady state 0. Then there exist numbers κi , i = 1, 2, . . . , n such that for the
system

(−A − D∇2)u = Q(u, u) + C(u, u, u) + Ku3 + λ̃Bu + h.o.t., (4.16)

where K = {Kij } = {κiδij }, u3 = (u3
1, . . . , u

3
n)

T , n-dimensional sheets are stable solutions
obtained via the Turing bifurcation.

Proof. Note first that addition of the third order term K(u, u, u) to the right-hand side of
equation (4.16) results in β changing to β + �β, where

�β =
n∑

i=1

fiκi(ei)
3,

and a changing to a�β = a + 3
4�β and b changing to b�β = b + 3

2�β. Recall that f · e = 1.
Therefore, at least for one m we have fmem �= 0. Thus, we may choose the numbers κi in such
a way that the number �β attains any given value.

Now, by choosing a negative �β with large enough modulus, we can guarantee that the
following double inequality holds:

b�β < a�β < 0.

This is the set of sufficient conditions for stability of n-dimensional sheets. �
For nodules, the situation is slightly more complicated. In fact, not every system (2.2) can

be modified by adding only third order terms to have stable nodules. That is, such a system
needs to satisfy the following necessary and sufficient condition.

Theorem 3. Consider system (2.2) with Turing instability for k2 = 1 around a spatially
homogeneous steady state 0. Then the following statements are equivalent:

(i) 2a − b < 0;
(ii) there exists a third order term K(u, u, u) = ∑

ij� κij�uiuju� such that for the system

(−A − D∇2)u = Q(u, u) + C(u, u, u) + K(u, u, u) + λ̃Bu + h.o.t., (4.17)

nodules are stable solutions obtained via Turing bifurcation.

Proof. We use the same notation as in the previous proof. After adding the third order term,
β changes to β + �β, while a changes to a�β = a + 3

4�β and b changes to b�β = b + 3
2�β.

Suppose first that condition (ii) is satisfied, that is, after adding the above third order terms,
we have

a�β < min{b�β, −(n − 1)b�β}.
It follows that a�β � 0 and, therefore, 2a�β � a�β < b�β . This implies that condition (i) is
satisfied if 2a − b = 2a�β − b�β < 0.

Now suppose that condition (i) is satisfied. As shown in the proof of theorem 2, we may
choose the third order term Ku3 such that �β = − 2

3b. Then b�β = 0 and

a�β = a − 1
2b < 0 = min{b�β, −(n − 1) b�β}.

This is a sufficient condition for the stability of nodules. Therefore, condition (ii) is
satisfied. �
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5. Application to a model of skeletal pattern formation

In this section, we use the general approach described in the previous sections for studying
stability of patterns in a model of skeletal pattern formation proposed in [10].

5.1. Description of the model

We consider the following system of reaction–diffusion equations:

∂

∂t
U = gF(U) + (D(λ2) + dH)∇2U, (5.18)

where U = (u, v, R) and

F(U) =




(Ja(u)β(u) + J 1
a α(u))R − uv

Ji(u)β(u)R − uv

rR(R0 − R)


 , H =


0 0 0

0 1 0
0 0 0


 ,

D(λ2) =




1 0 0
0 0 0

−λ2
∂γ

∂u
R2 0 dcell − λ2γ (u)R


 .

We consider these equations on a rectangular domain with no-flux boundary conditions. The
variables u(x, t) and v(x, t) are the concentrations of certain morphogens (the diffusible protein
factor TGF-β, which induces fibronectin production, and an inhibitor of TGF-β). There are
three different types of mobile mesenchymal cells in this model, namely type R1, type R2

and type R2′ cells. The concentrations of these different types of cells are given as fractions
of the overall cell density R(x, t) as R1(x, t) = α(u)R(x, t), R2(x, t) = β(u)R(x, t) and
R′

2(x, t) = γ (u)R(x, t), where α + β + γ = 1. (A fourth cell type, R3, corresponding to
the nonmobile cartilage cell that differentiates from the R2′ cells, is considered in the full
model [10] but does not enter into the reaction–diffusion system.) Note that the proportions
α, β and γ depend on the TGF-β concentration u. The R1 cells produce TGF-β and the
inhibitor at the rates Ja(u) and Ji(u), respectively, whereas R2 cells produce TGF-β at the
low constant rate J 1

a . R2′ cells secrete the extracellular matrix molecule fibronectin, which is
known to initiate adhesion-mediated mesenchymal condensation. In the equations above, the
parameter λ2 is directly related to the rate at which R2′ cells produce fibronectin.

The diffusion coefficient of TGF-β is scaled to 1, while the diffusion coefficients of the
inhibitor and the cells are denoted by d and dcell, respectively. Note that there is an effective
diffusion coefficient for the cells deffective = dcell −λ2γ (u)R in the above equations as diffusion
of cells is slowed down in the presence of fibronectin. The parameter g is directly related to
the scale of the domain 6.

One is mainly interested in spatial patterns in the cell density R arising in these equations
through a Turing-type mechanism as described in section 2. Sites of high cell concentration
are interpreted as the onset of mesenchymal precartilage condensation.

It is shown in [10] that for certain parameter ranges system (5.18) can give rise to patterns
via a Turing-type mechanism. Here we are interested in the stability of these patterns. Indeed,

6 In biological systems, signals may be propagated by a combination of direct cell–cell communication and active
cell response in a fashion that is mechanistically different from, but formally analogous to, free diffusion [21]. In such
cases, the stability problem would be very different from that described here. Simulations using realistic biological
parameters have indicated, however, that true diffusion (specifically of TGF-β class morphogens like that considered
here) is a plausible component of developmental pattern-forming mechanisms [21].
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Figure 4. Plot of a(λ2) and b(λ2) with intervals of stability.

(This figure is in colour only in the electronic version)

it seems reasonable that any patterns one can observe in experiments must be stable with respect
to small perturbations, although there could of course be other mechanisms not accounted for
in the above ‘bare-bones’ model that stabilize the emerging patterns.

5.2. Examples of stable patterns

We carried out a study of the influence of the fibronectin production rate λ2 on the stability of
patterns (see figure 4). Let us first indicate how system (5.18) fits in the general set-up of the
previous sections.

Fix all parameters except d and λ2. Let U0 = (u0, v0, R0) denote the constant equilibrium
of (5.18) meaning that F(U0) = 0. As before, denote by A = (∂F/∂U)(U0) the linearization
of the kinetic terms at the equilibrium.

Now, for each λ2 there exists a critical value dcrit = dcrit(λ2) of d and a number k2
0 such that

there is an onset of a Turing bifurcation at the mode k0. That is, the matrix gA−k2
0(D−dcritH)

has a one-dimensional kernel and all other eigenvalues are negative. Also, for any k2 �= k2
0 all

eigenvalues of gA − k2(D − dcritH) are negative. The parameter g can be used for rescaling
k2

0 to 1. Then the steady state equation for system (5.18) in the vicinity of d = dcrit is given by

0 = g F(U) + (D(λ2) + dcritH)∇2U + (d − dcrit)H∇2U. (5.19)

This equation has the form of the general bifurcation equation (2.2). Our bifurcation parameter
is λ̃ = d − dcrit .

In a way similar to section 3, we now compute parameters a and b (which in this case are
functions of λ2) and determine the stability of patterns using the criteria of theorem 1. Figure 4
presents graphs of a and b as functions of λ2 for the following parameter values:

R0 = 2.0, β(u) = 0.745 147u

u + 1.922 48
, γ (u) = 0.031 3087u

u + 1.922 48
,

Ja(u) = 260.0u

u + 5.7
, Ji(u) = 286.26u

u + 5.5
, J0 = 0.78, r = 5.0, dcell = 0.65.

Now by using figure 4 and theorem 1 we can identify the following intervals.
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Two-dimensional case (square):

0 � λ2 < 19.4: stripes are stable (b < a < 0),
19.4 < λ2 < 27.6: spots are stable (a < min(b, −b)),
λ2 > 27.6: no pattern is stable.

Three-dimensional case (cube):

0 � λ2 < 19.4: sheets are stable (b < a < 0),
19.4 < λ2 < 26.6: nodules are stable (a < min(b, −2b)),
λ2 > 26.6: no pattern is stable.

6. Discussion

In this paper, we have investigated patterns generated by means of a Turing bifurcation in
n-dimensional cubes. We showed that such patterns were linear combinations of 1

2 -sheet
patterns. We also derived a stability criterion (theorem 1) and showed that only 1

2 -sheets and
n-dimensional nodules could be stable. We proved that for any given system, sheets could be
made stable by adding third order terms. This is not the case for nodules; instead we obtained
a necessary and sufficient condition for determining the cases when nodules could be made
stable by adding third order terms.

Finally, we have applied the stability criteria to a model of skeletal pattern formation in the
chicken limb [10]. The conditions under which different sheet-like and nodule-like patterns
are stable are crucial to our understanding of the different generic skeletal elements that are
observed in the avian limb. In the context of avian limb development this is clearly seen in the
initial stability of the bar-like humerus, radius and ulna, followed by the nodule-like carpals and
tarsals and finally the bar-like digits (though there appears to be a new segmentation transition
being observed here).

Theoretical results described in this paper have been used in the numerical implementation
of two-dimensional and three-dimensional multiscale models of vertebrate limb development
in [19, 20].

It is interesting to see in our stability analysis of the biological equations that the parameter
λ2 (which is directly related to the rate of fibronectin production of the cells) determines the
stability of different patterns. This is encouraging since, as mentioned in the introduction,
that the level of fibronectin appears to play the predicted role in the shape of precartilage
condensations in vitro [18], a phenomenon that also emerges in a biologically-motivated
cellular automata model of precartilage condensation in vitro [22].

In fact, in biological systems the stability criterion may turn out to be even more complex
than considered in this paper. In particular, the domain in which the pattern appears has an
asymmetrical paddle-like shape, and is also subject to anisotropic growth along various axes (in
the case of an avian limb these would correspond to the proximodistal—shoulder to limb tip—
anteroposterior—thumb to little finger—and dorsoventral—back surface to palm—axes [23]).
The stability problem may thus include a convective component, which may also influence the
stability of the biological pattern.

While our analysis was carried out for Cartesian domains, the methods used in this paper
can be applied also to domains � of more general shapes. In this case, however, instead
of cosine functions one would have to work with the eigenfunctions of the operator (2.5)
(with λ̃ = 0). By applying the general procedure described above, one could arrive at a
stability theorem resembling theorem 1, but the calculations would be algebraically more
difficult due to the more complicated properties of the eigenfunctions corresponding to the zero
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eigenvalue [12–15]. Of course, the resulting patterns may differ from the patterns obtained for
a rectangular domain.

In addition, boundary conditions, other than the no-flux conditions that we considered in
this paper, will certainly have an effect on the patterns and their stability.
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