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We derive a continuous limit of a two-dimensional stochastic cellular Potts model (CPM) describing
cells moving in a medium and reacting to each other through direct contact, cell-cell adhesion, and long-
range chemotaxis. All coefficients of the general macroscopic model in the form of a Fokker-Planck
equation describing evolution of the cell probability density function are derived from parameters of the
CPM. A very good agreement is demonstrated between CPM Monte Carlo simulations and a numerical
solution of the macroscopic model. It is also shown that, in the absence of contact cell-cell interactions,
the obtained model reduces to the classical macroscopic Keller-Segel model. A general multiscale
approach is demonstrated by simulating spongy bone formation, suggesting that self-organizing physical
mechanisms can account for this developmental process.
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A large literature exists studying continuous limits of
pointwise discrete microscopic models for biological sys-
tems. For example, the classic Keller-Segel partial differ-
ential equation (PDE) model of chemotaxis [1] was derived
from a discrete model with pointwise cells undergoing a
random walk [2–5]. However, many biological phe-
nomena require taking into account the finite size of bio-
logical cells, and much less work has been done on
deriving macroscopic limits of microscopic models which
treat cells as extended objects. The mesoscopic cellular
Potts model (CPM), first introduced by Glazier and Graner
[6,7], has been used as a component of multiscale, experi-
mentally motivated hybrid approaches, combining discrete
and macroscopic continuous representations, to simulate,
among others, morphological phenomena in the cellular
slime mold Dictyostelium discoideum [8], vascular devel-
opment [9] and the proximo-distal increase in the number
of skeletal elements in the developing avian limb [10].

One of the earliest attempts at combining mesoscopic
and macroscopic levels of a description of cellular dynam-
ics was described in Ref. [11], where the diffusion coeffi-
cient for a collection of noninteracting randomly moving
cells was derived from a one-dimensional CPM. Recently,
a microscopic limit of a subcellular elements model [12]
was derived in the form of an advection-diffusion PDE for
cellular density. In previous papers [13,14], we studied the
continuous limit of 1D and 2D models of individual cell
motion in a medium, in the presence of an external field but
without contact cell-cell interactions.

This Letter describes a derivation of the continuous
macroscopic limit of the 2D CPM with contact cell-cell
interactions and cell-cell adhesion which can be extended
to three dimensions. Because of the fast calculation speed
possible with the continuous model, we quickly test a wide
parameter range and determine appropriate values for pa-
rameters used in the CPM simulations. The continuous

model provides very good approximations for a system
containing a biologically realistic (i.e., large) number of
cells, for which numerical simulations of CPM trajectories
can be prohibitive. We demonstrate that the multiscale
approach can be applied to studying biological phenomena
in which a nonconfluent population of cells interact di-
rectly and via soluble factors, forming an open network
structure. Examples include vasculogenesis [9,15–17] and
the formation of trabecular or spongy bone [18–20].

In the CPM, defined on a multidimensional lattice, an
integer vector index is associated with each lattice site
(pixel). Each cell or medium is represented by a cluster
of pixels with the same index. Indexes of pixels evolve
according to the classical Monte Carlo (MC) algorithm
based on Boltzmann statistics and the effective energy

 E � EECM � Eadhesion � Eperimeter � Efield: (1)

If a proposed change in a lattice configuration results in
energy change �E, it is accepted with probability

 ���E� � 1� f1� exp����E�g���E�; (2)

where 1=� represents an effective boundary fluctuation
amplitude of model cells in units of energy and � is a
Heaviside step function. Since the cells’ environment is
highly viscous, cells move to minimize their total energy
consistent with imposed constraints and boundary condi-
tions. If a change of a randomly chosen pixel’s index
causes cell-cell overlap, it is abandoned (due to the ex-
cluded volume constraint). Otherwise, the acceptance
probability (2) is used for determining whether a pixel
changes its index, which might result in changing the
location of the center of mass and the dimensions of a
cell. We model rectangular cells moving or changing their
shapes by adding or removing a row or column of pixels
(see Fig. 1). We assume that cells can come into direct
contact and that they interact over long distances through
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chemotaxis. EECM and Eadhesion in the Hamiltonian (1)
phenomenologically describe the net adhesion or repulsion
between the cell surface and extracellular matrix (ECM)
and cell-cell adhesion: EECM�2JECM�Lx�Ly� and
Eadhesion � JaLcontact, respectively, where JECM and Ja are
binding energies per unit length of an interface. Lcontact is

the contact area between cells, and Eperimeter defines an
energy penalty function for dimensions of a cell deviating
from the target values LTx�y� : Eperimeter � �x�Lx � LTx�

2 �

�y�Ly � LTy�
2, where �x and �y are Lagrange multipliers.

Cells can move up or down gradients of both diffusible
chemical signals (chemotaxis) and insoluble ECM mole-
cules (haptotaxis) described by Efield � �c�r; t�LxLy, r �
�x; y�, where c�r; t� is a local concentration of signaling
molecules in the extracellular space and � is an effective
chemical potential.

Let P�r;L; t� denote the probability density for a cell
with its center of mass at r to have dimensions L �
�Lx; Ly� at time t. Let ��r	 ��r be the size of a lattice
site with �
 1, and let vectors e1;2 indicate changes in x
and y dimensions: e1��r�1;0�, e2��r�0;1�. We normal-
ize the total probability to the number of cells:R
P�r;L;t�drdL�N. The excluded volume constraint im-

plies that position r0 and size L0 of any neighboring cell
should satisfy 2jx�x0j�Lx�L0x, 2jy� y0j � Ly � L0y.

A discrete stochastic cellular dynamics under these con-
ditions is described by the following master equation:
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: (3)

Here we introduce dynamics into the MC algorithm by
defining the time step �t. Individual biological cells expe-
rience diffusion (see, e.g., [21]). We choose �t to match
the experimental diffusion coefficient. Equation (3) would
determine a version of a kinetic or dynamic MC algo-
rithm (see, e.g., [22]) if we were to allow fluctuation of
�t. For simplicity, we assume that �t � const. Also,
�j;l�r��r;L; r0;L0; t� denote probabilities of transitions
from a cell of length L0 and center of mass at r0 to a cell
of dimensions L and center of mass at r. Subscripts l and r
correspond to transition by addition (removal) of a row
(column) of pixels from the rear (lower) and front (upper)
ends of a cell, respectively.

We define �j;l�r��r;L; r0;L0� � Tl�r��r;L; r0;L0� 	
�1��j;l�r��r;L; t��, where Tl�r��r;L; r0;L0� denote proba-
bilities of transitions from a cell of length L0 and center of

mass at r0 to a cell of dimensions L and center of mass at r
without taking into account the excluded volume principle.
According to the CPM, we have that Tl�r��r;L; r0;L0� �
1
8 ��E�r;L� � E�r0;L0��, where the factor of 1=8 is due to
the fact that there are potentially 8 possibilities for increas-
ing or decreasing of Lx�y�. The second term �j;l�r��r;L; t�
takes into account contact interactions between cells. It
includes contributions from 3 possible types of stochastic
jump processes due to contact interactions between cells:
(a) a cell adheres to another one, (b) two adhered cells
dissociate from each other due to membrane fluctuations,
and (c) membranes of two adhered cells are prevented from
moving inside each other (due to the excluded volume
constraint) resulting in a negative sign of a contribution
to a jump probability. Neglect of triple and higher order
‘‘collisions’’ between cells results in
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where � is a Kronecker’s symbol, s � 1 for k � l, s � �1 for k � r, L1�2� � Lx�y�, L3 � Lx, r1�2� � x�y�, and r3 � x. The
factor �N � 1�=N is due to pairwise cellular interactions, and the sum of 3 terms inside parentheses corresponds to
processes (a), (b), and (c), respectively.
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FIG. 1 (color online). Cell representation in the 2D CPM. In
this picture, gray and white are used to indicate the cell body and
ECM, respectively. The cell can grow or shrink in the x and y
directions by adding or removing one row (or column) of pixels.
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We found by using MC simulations (not shown) that
solutions of the master equation (3) with general ini-
tial conditions quickly converge to P�r;L; t� �
PBoltz�r;L; t�p�r; t�, where PBoltz�r;L; t� � Z�r; t��1	

exp����Elength� is a Boltzmann-like distribution depend-
ing on r and t only through c�r; t�, �Elength � E�r;L� �
Emin � �x ~L2

x � �y ~L2
y � ~Lx ~Ly�c�r; t�, and ~L�L�L�min�

(see also [13]). Here Emin�E�r;L�min�� is the minimal
value of (1) achieved at L�L�min� and Z�r;t��

�2��r�2
P

L exp����Elength�’2�=�
��������������������������������������
4�x�y��

2c�r;t�2
q

is an asymptotic formula for a partition function as �! 0.
The typical fluctuations of cell dimensions ~Lx�y� are

determined by ��x�y� ~L
2
x�y� � 1. Suppose x0 (y0) are typical

scales of P with respect to x (y), meaning that x0 
 ~Lx,
y0 
 ~Ly. We assume that �x2

0�x 
 1 and �y2
0�y 
 1. We

also assume that c�r; t� is a slowly varying function of r on
a scale of the typical cell’s length, meaning that xc=Lx 

1, yc=Ly 
 1, where xc (yc) are typical scales for variation
of c�r; t� in x (y). We also make the additional biologically
relevant assumption that 4�x�y 
 �2c�r; t�2, meaning
that a change of the typical cell size due to chemotaxis
�L�chemo�

x�y� is small: j�L�chemo�
x�y� j 
 L�min�

x�y� . Under all of the
above mentioned assumptions, the master equation (3) is
transformed in the limit �
 1 and by using Kramers-
Moyal expansion [23] terminating at the second order
term to the Fokker-Planck equation for P�r;L; t�. It is
then reduced with the help of PBoltz�r;L; t� (see also
Ref. [14]) to the evolution equation for the cellular proba-
bility density p�r; t�

 @tp � D2@2
rp� �0@r�p@rc�r; t�� �

D2

2
�1� N�1�

	 f@x� xp� � @y� yp�g;

 rj �
Z L�min�

j�1

�L�min�
j�1

exp��Ja�L
�min�
j�1 � jr

0
j�1j���p�r� ej�1r0j�1

� ejL
�min�
j � � p�r� ej�1r0j�1 � ejL

�min�
j ��dr0j�1;

(5)

where D2 � ���r�2=16�t, @2
r � @2

x � @
2
y, �0 �

�D2��L
�min�
x L�min�

y , L�min�
x�y� � LTx�y� � Jcm=�x�y�, andR

p�r�dr � N. Without cell-cell adhesion Ja � 0, Eq. (5)

describes contact cell-cell interaction with the excluded
volume constraint. Last, we couple Eq. (5) to an equation
describing the evolution of the chemotactic field c

 @tc � Dc@2
rc� 	c� ap; (6)

where Dc, 	, and a are diffusion, decay, and cellular
production rates of the chemical, respectively. If p�r; t� is
slow with respect to a space variable in comparison with
cell length, then Eq. (5) is reduced to a simpler local PDE:

 @tp � D2@2
rp� �0@r�p@rc�r; t�� �D3@2

rp2; (7)

D3 � D2�1� N�1�L�min�
x �exp��JaL

�min�
x � � 1�=��Ja�. We

assumed for simplicity that L�min�
x � L�min�

y .
If contact cell-cell interactions are not taken into account

(i.e.,  j � 0), Eqs. (5) and (6) reduce to the classical
Keller-Segel system [1] which has a finite time singularity
and which was used for modeling aggregation of bacterial
colonies [24]. Contact interactions  j � 0 significantly
slow down collapse, and, therefore, Eqs. (5) and (6) can
be used for a much longer period of time. The spongy bone
formation considered in this Letter is accompanied by
secretion of a viscous ECM (see below) which progres-
sively solidifies and thereby stabilizes a transient or meta-
stable arrangement of cells into a persistent microanatomy
and therefore also prevents collapse.

Figure 2 demonstrates a very good agreement between a
typical CPM with cell-cell adhesion simulations and the
numerical solution of the continuous model (5) and (6).
Both simulations were performed on a rectangular domain
0 � x, y � 100 with simulation time tend � 400. We used
no-flux boundary conditions with �r � 1, LTx�y� � 3,
�x�y� � 1:5, Ja � �0:042, Jcm � 2, � � 15, � � 0:1,
Dc � 3:0, 	 � 0:000 25, a � 0:2, �t � 0:0001, and � �
0:01. The discretization of (6) was used to simulate c�r; t�
on a 200	 200 lattice with the time step �tc � 0:0125 and
initial chemical field chosen in the form of c0�x; y� �
��x� 70�2 � �y� 60�2�=400. The typical size of the
mesh used in the continuous model was 1000	 1000,
and the time step was 0.000 625. A large number of CPM
simulations have been run to guarantee a representative
statistical ensemble. At each time step each cell releases
chemical content a�tc, which is then distributed to the four
nearest chemical lattice sites.
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FIG. 2 (color online). Comparison be-
tween CPM and the macroscopic contin-
uous model. (a) Plot of a 2D probability
density distributions for a CPM simula-
tion of 15 cells with � � 0:01 and a
numerical solution p�x; y; t� of the con-
tinuous equation (5). (b) Cross sections
of p�53:0; y; t� as functions of y for MC
(squares) and continuous (solid line)
simulations.

PRL 99, 168102 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
19 OCTOBER 2007

168102-3



Now we illustrate the efficacy of our approach by mod-
eling the formation of spongy bone via the intramembra-
nous route. In this developmental phenomenon, which
generates portions of the skull, maxilla, and mandible in
vertebrate organisms, bone cells, or osteoblasts, differen-
tiate directly from loosely packed mesenchymal cells. The
differentiating cells secrete TGF-�, which acts chemotac-
tically, influencing cell migration while simultaneously
inducing production of ECM [25], which in developing
bone is termed osteoid [18]. Depending on local condi-
tions, including initial cell density, the bone will progress
to a dense state or stop at a spongy state, in which bony
rods or trabeculae form a Swiss-cheese-like network [see
Fig. 3(c)] that eventually contains marrow tissue originat-
ing from the circulation. Our simulations, which start with
initially dilute populations of cells, result in a transiently
appearing set of interconnected multicellular trabeculae
[see Figs. 3(a) and 3(b)] similar to the experimental picture
[Fig. 3(c)]. In particular, in the simulations and the devel-
oping tissue there are many nodes from which three
branches extend but few with larger numbers.

In summary, we have derived a macroscopic continuous
model (5) from a mesoscopic 2D CPM and coupled it to
chemoattractant equation (6). Simulations confirm a very
good agreement between the CPM and macroscopic equa-
tions. Establishing a continuous limit for the CPM, which
is widely used for modeling multicellular systems, should
have broad applicability in biophysics. In particular, it
facilitates parameter search and estimation of qualitative
behaviors of large numbers of cells in implementations of
the classic CPM. Numerical analysis of the macroscopic
model resulted in determination of conditions promoting
the formation of a latticelike aggregation pattern and al-
lowed us to determine the parameter ranges then used in
the CPM simulations of intramembranous development of
spongy bone (Fig. 3). In contrast to earlier suggestions that
the trabecular arrangement of spongy bone is based on
preexisting vascular patterns [26] or later-forming patterns
of mineral deposition [19,20], our results suggest that it can
arise from the self-organizing behavior of mesenchymal
cells interacting with their ECM.
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FIG. 3 (color online). Simulations of spongy bone formation. �r � 1, LTx�y� � 0:6, �x�y� � 1:5, Ja � 0, Jcm � 0:002, � � 15, � �
�0:1, Dc � 0:5, 	 � 0:014, �tc � 0:01, � � 0:1, and tend � 180, with periodic boundary conditions. (a) CPM simulation of
15 000 cells initially randomly distributed in a domain 0 � x, y � 100 with a � 0:7. (b) Numerical solution of the continuous model
with a uniform initial cell density distribution, 5% random fluctuation, and a � 0:2. (c) Histological section of developing spongy bone
in the rat skull. Trichrome stain. Photographed from a section in the New York Medical College Histology slide collection. The
magnification of this image is about 2	 that of (a) and (b). Scale bar: 0.1 mm.
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