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Abstract A recently proposed mathematical model of a “core” set of cellular and
molecular interactions present in the developing vertebrate limb was shown to exhibit
pattern-forming instabilities and limb skeleton-like patterns under certain restrictive con-
ditions, suggesting that it may authentically represent the underlying embryonic process
(Hentschel et al., Proc. R. Soc. B 271, 1713–1722, 2004). The model, an eight-equation
system of partial differential equations, incorporates the behavior of mesenchymal cells
as “reactors,” both participating in the generation of morphogen patterns and changing
their state and position in response to them. The full system, which has smooth solutions
that exist globally in time, is nonetheless highly complex and difficult to handle analyt-
ically or numerically. According to a recent classification of developmental mechanisms
(Salazar-Ciudad et al., Development 130, 2027–2037, 2003), the limb model of Hentschel
et al. is “morphodynamic,” since differentiation of new cell types occurs simultaneously
with cell rearrangement. This contrasts with “morphostatic” mechanisms, in which cell
identity becomes established independently of cell rearrangement. Under the hypothesis
that development of some vertebrate limbs employs the core mechanism in a morphostatic
fashion, we derive in an analytically rigorous fashion a pair of equations representing the
spatiotemporal evolution of the morphogen fields under the assumption that cell differen-
tiation relaxes faster than the evolution of the overall cell density (i.e., the morphostatic
limit of the full system). This simple reaction–diffusion system is unique in having been
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derived analytically from a substantially more complex system involving multiple mor-
phogens, extracellular matrix deposition, haptotaxis, and cell translocation. We identify
regions in the parameter space of the reduced system where Turing-type pattern forma-
tion is possible, which we refer to as its “Turing space.” Obtained values of the parameters
are used in numerical simulations of the reduced system, using a new Galerkin finite ele-
ment method, in tissue domains with nonstandard geometry. The reduced system exhibits
patterns of spots and stripes like those seen in developing limbs, indicating its potential
utility in hybrid continuum-discrete stochastic modeling of limb development. Lastly, we
discuss the possible role in limb evolution of selection for increasingly morphostatic de-
velopmental mechanisms.

Keywords Limb development · Chondrogenesis · Mesenchymal condensation ·
Reaction–diffusion model

1. Introduction

The growth of experimentally-based knowledge of cell and gene function during embry-
onic development has enabled increasingly realistic mathematical and computational sim-
ulations of cellular pattern formation in multicellular organisms (reviewed in Forgacs and
Newman, 2005). Skeletal patterning in the vertebrate limb, i.e., the spatiotemporal regu-
lation of cartilage differentiation (“chondrogenesis”) during embryogenesis and regener-
ation, is one of the best studied examples of such developmental processes (Tickle, 2003;
Endo et al., 2004; Brockes and Kumar, 2005; Newman and Müller, 2005). Limb
morphogenesis involves subcellular, cellular and supracellular components that inter-
act in a reliable fashion to produce functional skeletal structures. Since these com-
ponents and interactions are also typical of other embryonic processes, understanding
this phenomenon can provide insights into a variety of morphogenetic events in early
development.

The basic organization of the limb bud and adult limb skeleton are similar among
the vertebrates (Hinchliffe, 2002). Despite this general conservation, there is extensive
morphological and functional diversity arising from variations in the way the cellular-
molecular mechanisms that sculpt the limb are employed. Classical observations and
experimental studies have demonstrated that the limb skeleton of all vertebrates arises
from the loosely packed interior cells of the limb bud (“mesenchyme”). Cartilage, the
initially forming skeletal tissue, is replaced by bone later in embryogenesis in species
with bony skeletons. The limb skeleton of most vertebrate groups (e.g., birds and mam-
mals) develops in a proximodistal fashion (i.e., the structures closer to the attachment
point on the body arising earliest and the successively more distant ones in tempo-
ral order). Its elongation and progressive distalization is entirely dependent on a nar-
row rim of raised cells of the ectoderm, or embryonic skin, running along the dis-
tal tip of the paddle-shaped limb bud, the Apical Ectodermal Ridge (AER). The AER
also keeps the mesenchymal cells within approximately 0.3 mm of it in an undiffer-
entiated state; chondrogenesis is preceded by, and dependent on, the transient forma-
tion of tight aggregates of cells—“precartilage condensations”—that form at specific
sites within the mesenchyme sufficiently distant from the AER (reviewed in Newman,
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Fig. 1 Cartoon representing semi-transparent view of chondrogenesis in the chick wing bud between
4 and 7 days of development. Light gray represents precartilage (sites of R1 and R′

2 cells) and black
represents definitive cartilage (sites of R3 cells). Adapted, with modifications from Forgacs and Newman
(2005).

1988). Urodele (i.e., tail-bearing) amphibians (salamanders and newts) represent an ex-
ception to these generalizations in that they lack an AER and the development of their
skeletal elements is not strictly proximodistal (Franssen et al., 2005). They are also
the only vertebrate species to fully regenerate amputated limbs (Brockes and Kumar,
2005).

Given the complexity of the cell-molecular interactions involved in generating the limb
skeleton, theoretical approaches that focus on the commonalities of the developmental
process, rather than the element- or limb-type specificities, provide a logical starting point.
Under this strategy, the fundamental problem to be addressed by a mathematical model of
limb development is accounting for the formation of the generic pattern during skeleto-
genesis, more specifically, the sequence of transitions from a single bar of cartilage (i.e.,
the developing humerus or femur) to the two bars of cartilage of the mid-arm or leg, to
the rows of nodules constituting the wrist or ankle and the multiple bars of the hand or
foot (see Fig. 1). Several models of this process have been based on Turing-type insta-
bilities in reaction–diffusion systems (Newman and Frisch, 1979; Hentschel et al., 2004;
Alber et al., 2005a; Cickovski et al., 2005; Miura et al., 2006). In these models the spa-
tiotemporal evolution of various morphogens (i.e., secreted, diffusible gene products) and
the cells that respond to them by changing their position and differentiating into carti-
lage, generate the classic pattern of skeletal elements (reviewed in Newman and Müller,
2005).

The most detailed model for vertebrate limb development presented thus far is that of
Hentschel et al. (2004). That system of eight partial differential equations (PDEs) was
constructed largely on the basis of experimentally determined cellular-molecular interac-
tions occurring in the avian and mouse limb bud. The full system has smooth solutions
that exist globally in time (Alber et al., 2005a) but is difficult to handle analytically or
numerically. By analytically implementing the assumption (proposed to apply to limb
development in some vertebrate species; see Discussion) that cell differentiation relaxes
faster than the evolution of the overall cell density, we show here that a pair of PDEs
can be extracted from the eight-equation system governing the interaction of two of the
key morphogens: the activator and the activator-dependent inhibitor of precartilage con-
densation formation. According to a recent classification of developmental mechanisms
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(Salazar-Ciudad et al., 2003), the limb model of Hentschel et al. (2004) is “morphody-
namic,” since differentiation of new cell types occurs simultaneously with cell rearrange-
ment. This contrasts with “morphostatic” mechanisms, in which cell identity becomes
established independently of cell rearrangement. Our result, therefore, is a simple but
biologically motivated, system that describes the behavior of the pattern-forming limb
morphogens in the “morphostatic limit.”

In the simplified two-equation system for morphogen evolution, determining parame-
ter ranges under which the system can give rise to patterns (what we refer to as the “Tur-
ing space” of the system) is much more tractable than for the full morphodynamic system.
The reduced reaction–diffusion system can also feasibly be used in a variety of compu-
tational models in which additional morphogens, responsive model cells (specified to be-
have according to the assumptions under which the morphogen subsystem was isolated)
and realistic limb bud geometries, can be introduced. The fact that the reduced equa-
tions are derived analytically from the morphodynamic system makes them biologically
better justified then ad hoc reaction kinetics used in earlier hybrid continuum-discrete
models of the limb (Chaturvedi et al., 2005; Cickovski et al., 2005). To illustrate the
pattern-forming capability of the reduced system in geometrically irregular domains, we
present simulations under selected parameter ranges using a novel Galerkin finite element
method.

The paper is organized as follows: In Section 2, we give a brief overview of the model
and summarize the findings of Hentschel et al. (2004) in compact form with emphasis
on the biological significance. The main mathematical content of the paper follows in
Section 3. There we analyze the morphostatic limit of the full model, that is, the re-
duced equations we obtain by making certain (biologically motivated) assumptions as
indicated above, the most important one being that cell differentiation is a faster process
than the evolution of the overall cell density. We then prove a result on the positivity
of solutions of the corresponding systems of PDEs. We then consider the fundamen-
tal requirement that our system be able to give rise to Turing patterns, and thus iden-
tify parameter ranges where a Turing instability is possible. Based on the requirement
of the possibility of Turing patterns, we can derive necessary conditions on our sys-
tem, which translate into testable predictions concerning the behavior of cells. In par-
ticular, we determine the choice of parameters which guarantees existence of solutions
of the system of equations in the morphostatic limit. Such solutions are required to
be nonnegative and do not approach infinite values (i.e., blow up) in finite time. Ob-
tained values of the parameters are used in numerical simulations of the system on ir-
regular tissue domains (Section 4). In Section 5, we discuss the implications of the
pattern formation mechanisms in the morphostatic limit for development and evolution
of the limb.

2. Modeling limb skeletal pattern formation

2.1. Biological background

In the last two decades, the molecules that mediate many key processes in limb mor-
phogenesis and pattern formation have been identified: the AER is a source of, and can
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be replaced by, a set of secreted, diffusible fibroblast growth factors (FGF-2, FGF-8)
(Martin, 1998); cell condensation is mediated by a secreted extracellular matrix protein,
fibronectin (Frenz et al., 1989; Gehris et al., 1997); fibronectin itself is induced by one
or more of a family of secreted, diffusible factors (TGF-βs) (Leonard et al., 1991) which
also induce their own production (positive autoregulation) (Miura and Shiota, 2000a).
Spatial expansion of condensations is limited by a laterally acting inhibitor that comes to
surround condensing cells in response to ectodermal FGFs (Moftah et al., 2002). While
the molecule(s) mediating this inhibitory effect has not been identified, the effect appears
to be dependent on both FGF receptor 2 (Moftah et al., 2002) and the Notch signaling
pathway (Fujimaki et al., 2006) (see also Newman and Bhat, in press). Finally, differ-
ential expression of a variety of molecules, including the secreted factor Sonic hedge-
hog (Shh) and the Hox family of transcription factors, cause skeletal elements to differ
from one another in morphological detail within a given limb (Tickle, 2003) and are also
thought to be responsible for differences in limb morphology between species (Hinchliffe,
2002).

This set of cell and molecular interactions suggests a model for skeletal pattern for-
mation based on a Turing-type pattern forming mechanism that has undergone evolu-
tionary fine-tuning (see Turing, 1952; see also Newman and Müller, 2005 for a review).
A number of caveats are relevant in considering this class of mechanisms, however.
While it continues to be a matter of debate whether morphogens are indeed transported
through tissues by diffusion (Merkin and Sleeman, 2005; Lander, 2007), recent quantita-
tive studies have provided evidence for diffusion of both TGF-β-type (Lander et al., 2002;
Williams et al., 2004) and FGF-type (Filion and Popel, 2004) morphogens during key
developmental processes. In any case, alternative means of transport, such as transcyto-
sis (Entchev et al., 2000) and long-distance signaling by filopodia (De Joussineau et al.,
2003), can play the same formal role as diffusion in Turing-type pattern-forming systems
(Nijhout, 2003).

Beyond this, the following experimental findings, count in favor of the relevance of
a reaction–diffusion mechanism for limb pattern formation: (i) The pattern of precarti-
lage condensations in limb mesenchyme in vitro changes in a fashion consistent with
reaction–diffusion mechanism (and not with an alternative mechanochemical mecha-
nism) when the density of the surrounding matrix is varied (Miura and Shiota, 2000b);
(ii) exogenous FGF perturbs the kinetics of condensation formation by limb precarti-
lage mesenchymal cells in vitro in a fashion consistent with a role for this factor in
regulating inhibitor production in a reaction–diffusion model (Miura and Maini, 2004);
(iii) the “thick-thin” pattern of digits in the Doublefoot mouse mutant can be accounted
for by the assumption of that the normal pattern is governed by a reaction–diffusion
process the parameters of which are modified by the mutation (Miura et al., 2006);
and (iv) the scale-dependence of reaction–diffusion systems (i.e., the addition or loss
of pattern elements when the tissue primordium has variable size), sometimes consid-
ered to count against such mechanisms for developmental processes, may actually rep-
resent the biological reality in the developing limb. Experiments show, for example, that
the number of digits that arise is sensitive to the anteroposterior (thumb-to-little finger
breadth) of the developing limb bud, and will increase (Cooke and Summerbell, 1981)
or decrease (Alberch and Gale, 1983) over typical values if the limb is broadened or
narrowed.
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2.2. The morphodynamic model

Our starting point is the system of equations proposed in Hentschel et al. (2004), which
describes the cell dynamics and the chemical processes during limb bud formation. It has
the following form:

∂c/∂t = D∇2c − kc + J (x, t), (1)

∂ca/∂t = Da∇2ca − kacica + J 1
a R1 + Ja(ca)R2, (2)

∂ci/∂t = Di∇2ci − kacica + Ji(ca)R2, (3)

∂R1/∂t = Dcell∇2R1 − χ∇ · (R1∇ρ) + rR1(Req − R) + k21R2 − k12(c, ca)R1,

(4)

∂R2/∂t = Dcell∇2R2 − χ∇ · (R2∇ρ) + rR2(Req − R) + k12R1 − k21R2 − k22R2,

(5)

∂R′
2/∂t = Dcell∇2R′

2 − χ∇ · (R′
2∇ρ) + rR′

2(Req − R) + k22R2 − k23R
′
2, (6)

∂R3/∂t = r3R3(R3eq − R3) + k23R
′
2, (7)

∂ρ/∂t = kb(R1 + R2) + k′
bR

′
2 − kcρ. (8)

In the above equations, c denotes the concentration of FGFs, ca the concentration of TGF-
β (activator), ci concentration of the inhibitor, R1,R2,R

′
2,R3 densities of different kinds

of cells and ρ density of fibronectin. R = R1 + R2 + R′
2 is the overall density of the

mobile cells. As we are not interested in the growth phenomena of the limb, but only in
the processes of the pattern formation, we consider the system’s behavior in a smooth
(i.e., at least of C2+ν class) domain Ω ⊂ R

n, n ≥ 2, which is assumed to be fixed in
space and time, based on the assumption that τm � τg , τd � τg , where τm, τd and τg ,
are the characteristic times of morphogen evolution, cell differentiation, and limb growth,
respectively. In terms of the model parameters, τm ∼ L2/D, where L is the characteristic
length scale, as above, and D is the morphogen diffusivity, τd ∼ 1/k, where k is the rate-
limiting kinetic term for morphogen production, and τg ∼ L/V , where V is the typical
convective time scale for the viscoelastic tissue.

All of the functions are subject to no-flux boundary conditions

∂c

∂n
= ∂ca

∂n
= ∂ci

∂n
= ∂ρ

∂n
= ∂R1

∂n
= ∂R2

∂n
= ∂R′

2

∂n
= ∂R3

∂n
= 0

and smooth initial condition at t = 0. Here, n = n(x) is the outward normal to ∂Ω at
point x. Therefore, cells’ and chemicals’ fluxes are equal to zeros at the boundary.

This system is difficult to treat analytically for two reasons. First, diffusion constants
for R3 cells and fibronectin (ρ) are equal to zero. Second, the presence of the terms χ∇ ·
(R∗∇ρ), R∗ = R1,R2,R

′
2, may lead to a blow-up in finite time of the solutions. Therefore,

we have investigated the system under additional assumptions in Alber et al. (2005a). In
this paper, we introduce limiting conditions (see below) which also simplify analysis of
the system and allow us to study behavior of its solutions.
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3. Morphostatic limit

In what follows, we demonstrate nonnegativity of solutions and describe sufficient con-
ditions for the existence of Turing-type pattern solutions of the morphostatic limit of the
system described in the previous section. The key assumption is that cell differentiation
happens on a faster time scale than the change of cell densities due to individual cell mo-
tion, yielding what may be termed the “morphostatic limit” of the full system, with refer-
ence to the classification of composite developmental mechanisms by Salazar-Ciudad et
al. (2003)

3.1. Basic assumptions and reduction to two-equation system

Recall that a reaction–diffusion system may produce spot- or stripe-like patterns
in two dimensional domain, and under appropriate conditions, nodules and bar-like
structures in a three-dimensional domain (Alber et al., 2005b). The type of the re-
sulting pattern depends on the geometry of the domain as well as on the initial
conditions.

The Turing pattern which evolves from initial conditions is most likely the one which
corresponds to the linearly unstable wavelength, i.e., the wavelength k for which the pos-
itive eigenvalue of the matrix [A − k2D] is maximal (see Murray, 1993). Here A denotes
the Jacobian matrix of the linearization of the system near its constant steady state, stable
with respect to spatially homogeneous perturbations, and D is a diffusion matrix. How-
ever, in many developmental models including the one discussed in this paper, the initial
conditions are not simply random fluctuations. For example, pattern can be initiated at
one end of a spatial domain and then spread from there. In such cases, patterns other than
the one corresponding to the most unstable wavelength, may emerge due to the nonlinear
nature of the system.

We add an assumption to those made in Hentschel et al. (2004), namely that the overall
mobile cell density R = R1 + R2 + R′

2 is spatially homogeneous and does not depend
on time. (See also Chaturvedi et al., 2005 and Cickovski et al., 2005.) We are mainly
interested in the onset of patterns before condensation takes place, so that the density of
condensing cells R′

2 is effectively zero. Further, since no mobile cells become immobile
through differentiating into cartilage cells (since we consider the first differentiation event
R1 → R2 cells), the overall mobile cell density remains approximately constant over the
time scales we are concerned with, provided cell division is a slow process. The mobile
cell density is also spatially uniform, since in addition to the lack of condensation in
the R1 → R2 transition, cell division rates are uniform to a distance of 0.4–0.5 from
the AER (Stark and Searls, 1973). This comprises the 0.3 mm apical zone within which
condensation is blocked by high levels of FGF and all or most of the morphogenetically
active zone (Hentschel et al., 2004).

With these simplifications, system (1)–(8) reduces to following two evolution equa-
tions for the morphogens

∂ca/∂t = Da∇2ca + U(ca) − kacaci, (9)

∂ci/∂t = Di∇2ci + V (ca) − kacaci (10)
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with the initial and boundary conditions

ca(x,0) = ca0(x), ci(x,0) = ci0(x), (11)

∂ca

∂n
= ∂ci

∂n
= 0. (12)

Here, n = n(x) is the outward normal to ∂Ω at point x. (We assume that Ω ⊂ R
n, n ≥ 1,

is such that its boundary ∂Ω is of class C2+ν , ν ∈ (0,1).) The functions U and V are
given by

U(ca) = [
J 1

a α(c, ca) + Ja(ca)β(c, ca)
]
Req, V (ca) = Ji(ca)β(c, ca)Req. (13)

In Eqs. (13) J 1
a and ka are assumed to be constant. Ja(ca) and Ji(ca) are taken in the form

Ja(ca) = Ja,max(ca/s)
n/

[
1 + (ca/s)

n
]
, (14)

Ji(ca) = Ji,max(ca/δ)
q/

[
1 + (ca/δ)

q
]

(15)

with n ≥ 1, q ≥ 1. We further have (see the Electronic Appendix to Hentschel et al., 2004)

α(c, ca) = 1/Z(c, ca),

β(c, ca) = K1(c, ca)/Z(c, ca),

with Z(c, ca) = 1 + K1(c, ca)(1 + K2),

(16)

where K2 is a positive constant, and

K1(c, ca) = K(c)(ca/̃s)/
[
1 + (ca/̃s)

]
. (17)

In what follows, we will assume that c = const and s̃ = s and will use the notation

K(ca) = K(c)(ca/s)/
[
1 + (ca/s)

] = Kmax(ca/s)/
[
1 + (ca/s)

]
. (18)

3.2. Existence and nonnegativity of the solutions

Here, we determine the choice of parameters and initial conditions which would guarantee
existence of solutions of the morphostatic limit system of equations described in the pre-
vious section. To be biologically plausible, they need to be nonnegative and not approach
infinite values in finite time (blow up in finite time). Obtained values of the parameters
will be used in later sections in numerical simulations in tissue domains with nonstandard
geometry.

A Turing structure is a spatial pattern which appears close to a spatially homogeneous
steady state (ca∗, ci∗) that is stable in the absence of diffusion and which loses stability in
favor of the Turing pattern in the presence of diffusion.

Therefore, if the constant steady state is positive, then for the Turing pattern, we also
have that ca(x) > 0, ci(x) > 0. However, it is important to determine whether the con-
dition ca(x, t) ≥ 0, ci(x, t) ≥ 0 holds for all possible solutions of the system (9)–(10).
Indeed, a system of equations that allows concentrations to become negative if the ini-
tial conditions are nonnegative is clearly non-nonphysical and is an unsuitable model for
biological development.
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By successive applications of the maximum principle for parabolic operators, it can
be shown that nonnegative initial conditions in the system (9)–(10) imply that the con-
centrations remain nonnegative for all times. To be more precise, if one supposes that
ca(x,0) ≥ 0, ci(x,0) ≥ 0, then for any t > 0 in the maximal interval of existence of the
solution this yields that ca(x, t) > 0 and ci(x, t) ≥ 0 for x ∈ Ω .

We also established the bounds for the solutions in the form of the invariant rectan-
gles theorem. Suppose that Req > 0, J 1

a > 0 and Ji,max > Ja,max. Then there exist pos-
itive constants ci, ca, ca > ca, ci > ci such that if the initial conditions (ca0(x), ci0(x))

are contained in the rectangle I := [ca, ca] × [ci, ci], then there exists a unique solution
ca(x, t), ci(x, t) of the initial-boundary value problem (9)–(10) (satisfying conditions (11)
and (12)) with values contained in the rectangle I .

ci = sup
ca≥0

V (ca)

kaca

,

ca = inf
ca≥0

U(ca)

kaci

,

ca = sup

{
c̃a

∣∣
∣∣
U(c̃a)

c̃a

≥ min
ca≤ca≤c̃a

[
V (ca)

ca

]}
,

ci = inf
ca≤ca≤ca

V (ca)

kaca

.

Thus, the concentrations are always bounded and positive if the initial conditions lie be-
tween appropriate levels. Biologically, this means that the activator and inhibitor concen-
trations always remain above a certain threshold and that there is no blow-up of concen-
trations. The proof of the above existence statements, modulo some additional consider-
ations, follows from the sub- and super-solution method (e.g. Pao, 1992). As the proof is
rather straightforward, we have left the details to the reader.

Finally, it follows from the definition of the constants ca, ca, ci and ci that any non-
negative spatially homogeneous steady state (c∗

a, c
∗
i ) of the system must lie in the square

S = [ca, ca] × [ci, ci]. In particular, for Ji,max > Ja,max, a solution bifurcating from a posi-
tive stable constant steady state via the Turing bifurcation stays positive and its values lie
in S.

3.3. Potential for pattern formation

One of our goals here is to find possible sets of model parameters for which Turing bifur-
cation can take place. In Appendix A, we derive general conditions determining Turing
bifurcation for the system considered in this paper. These conditions are characterized in
terms of parameters δ and s, which appear in the activator- and inhibitor-production rate
functions Ja and Ji , respectively. These functions have Michaelis–Menten form. The con-
stants s and δ denote the concentrations which separate the linear response phase from the
saturation response phase. Our main result is that the Turing instability occurs only when
the ratio δ/s is of the order of 1. This is illustrated by a numerical example in Fig. 2. The
biological significance of our findings is discussed in the Discussion (Section 5).

In what follows, we consider a number of different biologically interesting cases and
determine whether the system can give rise to Turing patterns in each cases.
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Fig. 2 A graph illustrating the effect of the parameter δ/s on the Turing instability. We have numerically
solved the system (9)–(10) in the one-dimensional interval [0,1] with no-flux boundary conditions for
different values of the parameter δ. The computations were run for each parameter δ until a steady state
was reached. The parameter values were chosen such that the most unstable wavelength was k = 6, corre-
sponding to three spatial concentration peaks. The graph shows these steady states, parameterized by the
quotient δ/s. Thus, each line represents a steady state of the system, corresponding to a specific value of
the parameter δ/s. The Turing instability holds for δ/s between approximately 1.0 and 1.3. Note that while
the above graph represents only a specific example, it is shown in the paper that this qualitative behavior
holds in general, in the sense that the Turing instability is impossible for δ/s � 1 and δ/s � 1. The spe-
cific parameters for these computations were as follows: Ja,max = 6.0γ , Ji,max = 8.0γ , s = 4.0, ka = γ ,
Da = 1, Di = 100.3, J 1

a α = 0.05γ , β(ca) = 0.693473ca/(ca + 2.66294), Req = 2.0 with γ = 8900.

To characterize these cases, we use the following ratios of the parameters

z = ca/s, r = J 1
a /(KmaxJa,max), w = Ji,max/Ja,max. (19)

Here, J 1
a is assumed to be small compared to Ja,max (this is a biologically motivated

assumption, see Hentschel et al., 2004). Hence, we assume that r � 1.
Let K2 > 0, Kmax, s ∈ R and R  n ≥ 1 be given constants. Let K , Ja and Ji be given

by (18), (14) and (15), respectively, with q = n; that is,

Ja(ca) = Ja,max
(ca/s)

n

1 + (ca/s)n
,

Ji(ca) = Ji,max
(ca/δ)

n

1 + (ca/δ)n
.

We obtained the following results for the system (9)–(10):

(i) Case 1: δ/s � 1. Suppose q = n = 1. Then, for any r = J 1
a /(KmaxJa,max) > 0, there

exists δ0 = δ0(r) > 0 such that the system does not satisfy the conditions for the
existence of Turing instability at any positive spatially homogeneous steady state if
δ < δ0.

(ii) Case 2: δ/s = 1. Suppose δ = s. Then there exists a nonempty set of parameters
w = Ji,max/Ja,max with w > 1 and small enough r = J 1

a /(Ja,maxKmax) such that at the
(unique) positive steady state the conditions for the existence of the Turing instability
are satisfied.
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(iii) Case 3: δ/s � 1. Suppose q = n = 1. Assume further that w = Ji,max/Ja,max > 1.
Then there exists an a0 > 0 and r0 > 0 with the following property. If δ > 0 is such
that a = s/δ < a0 and J 1

a > 0 is such that r = J 1
a /(KmaxJa,max) < r0, then the system

does not have Turing instability at any positive spatially constant steady state.

The proof of these statements is presented in Appendix B.

3.4. The Turing space for the morphostatic system

In Fig. 3A, where δ/s is plotted against Ji,min/Ji,max with other parameters held constant
(see figure legend for the values), the shaded area represents those points in parameter
space where a Turing bifurcation is possible. The graph shows that such a bifurcation
cannot occur at the positive steady state for small δ/s and for large δ/s. Furthermore, for
Ji,min < Ja,max a Turing bifurcation is also not possible.

Fig. 3A An illustration of the Turing space of the system (9)–(10). All parameters ex-
cept Ji,max and δ were kept constant: Ja,max = 6.0γ , s = 4.0, ka = γ , J 1

a = 0.05γ ,
K1(ca) = 4ca/8.6 + ca,K2 = 0.9/11.9,Req = 2.0 with γ = 8900.
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Fig. 3B An illustration of the Turing space of the system (9)–(10). Here, all parameters except the cell
density Req and δ were kept constant. The values of parameters for this simulation were chosen as in
Fig. 3A, except for Ji,max = 8.0.

In Fig. 3B, δ/s is plotted against Req with values of other parameters listed in the figure
legend. This graph shows that a Turing bifurcation is only possible if δ/s is close to 1. It
also indicates that a Turing bifurcation is not possible if the cell density Req is too high.
In fact, for increasing Req, the spatially homogeneous steady state eventually becomes
unstable.

3.5. Comment on the diffusion coefficients Da and Di

We note that while there are estimates for morphogen diffusion coefficients Da and
Di (roughly on the order of 10−7 cm2/s; Lander et al., 2002), little is known about
the reaction coefficients in (9)–(10), thus necessitating our analysis of the Turing
space.

Recall that the Turing space is the set of all collections of reaction parameters for which
the Eqs. (9)–(10) can give rise to Turing patterns for some set of diffusion coefficients Da
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and Di . In fact, at a point in the Turing space, there is some critical value r > 1 such that
the system does give rise to patterns if and only if the ratio Di/Da is greater than r . Thus
the absolute values of Da and Di are not relevant to the existence of patterns, only their
ratio Di/Da . The absolute values of Da and Di will effect the nature of the pattern that
forms, however.

Our goal here was to investigate the Turing space—not what kind of patterns can be
expected. (For this, estimates of realistic reaction parameters would be needed.) The sim-
ulations in this paper should be understood as proof-of-principle of our analytical results,
rather than biologically realistic simulations.

As noted above, the critical value r of the ratio Di/Da (i.e., the value above which
Turing patterns are possible) depends on the reaction parameters. If molecular diffusion
is the only means considered for the propagation of activator and inhibitor, only values of
Di/Da of around 10 or less would be biologically plausible. However, other mechanisms
for rapid spread of activating or inhibitory effects have been suggested (Zhu and Scott,
2004; Rauch and Millonas, 2004; Newman and Bhat, in press), making significantly larger
effective Di/Da ratios also reasonable.

4. Morphogen dynamics in an irregular domain

In addition to initial conditions and choice of parameters, patterns in reaction–diffusion
systems depend sensitively on domain size and shape (Lyons and Harrison, 1992;
Crampin et al., 2002; Zykov and Engel, 2004). Since the natural shape of a limb bud
(Fig. 1), and its subdomains such as the active zone have nonstandard geometries, we de-
veloped a mathematical formalism based on the finite element methods (Johnson, 1987),
to handle the complicated geometries and solve morphostatic reaction–diffusion sys-
tem (9)–(10) numerically. Our formalism belongs to the Discontinuous Galerkin finite el-
ement (DGFE) methods, which use completely discontinuous piecewise polynomial space
for the numerical solution and the test functions. Major advances in the development of
DGFE methods were presented in a series of papers by Cockburn et al. (1989, 1990);
Cockburn and Shu (1989, 1991, 1998a, 1998b).

The flexibility and efficiency of DGFE methods make them attractive for biological
applications. Recently, Cheng and Shu (2007) developed a new DGFE method for solv-
ing time dependent PDEs with higher order spatial derivatives. The scheme is formulated
by repeated integration by parts of the original equation and careful treatment of the dis-
continuity of the numerical solutions on the interface of the neighboring elements, which
is important for the stability of the DGFE methods. It is easier to formulate and imple-
ment and requires less storage and CPU cost than the usual DGFE methods for PDEs with
higher order spatial derivatives. We adopted the discontinuous Galerkin finite element nu-
merical approaches of Cheng and Shu (2007) and implemented it on both 2D rectangular
and triangular meshes to solve the reaction–diffusion system (9)–(10).

Patterns in reaction–diffusion systems are sensitive to the domain size and geometrical
shape. The shape of the developing limb bud undergoes continuous changes. The DGFE
approach can handle the irregular shapes easily by using triangular meshes to fit the do-
main. Both spot-like and stripe-like patterns are observed in simulations of the steady
state solution of the reaction–diffusion system (9)–(10) on domains with different sizes.
To simulate the pattern of realistic shapes of morphogenetically active zones in the limb
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Fig. 4A Simulations of the active zone with an irregular shape. Contour plots of the steady state of the
concentration of the activator. A triangular mesh is used to fit the irregular boundary of the domain.
The vertical length of the domain is roughly 0.65, and the horizontal length is 0.15. Parameter values
in the system: Da = 1, Di = 50.3, J 1

a α = 0.05γ , Ja,max = 6.0γ , Ji,max = 8.0γ , ka = γ , β1 = 0.693473,
β2 = 2.66294, Req = 2.0, n = q = 2, γ = 8900, s = 4.0, δ = 4.8. (Color figure online.)

Fig. 4B Simulations of active zones with changing sizes in the horizontal direction, and the vertical
size fixed at 1. Contour plots of the steady states of concentrations of the activator for different domain
size. Triangular meshes are used. Parameter values in the system are the same as those in Fig. 4A. (See
Myerscough et al., 1998, for a similar sensitivity of pattern to spatial scale in a generalized chemotactic
model.) (Color figure online.)
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bud, we randomly perturbed the rectangular boundary of the active zone, and used trian-
gular mesh to fit the irregular boundary. In Fig. 4A, the triangular meshes are indicated to
show the fit of computational mesh to the irregular boundary. The vertical length of the
domain is roughly 0.65, and the horizontal length is 0.15 arbitrary units. A flood contour
plot of the steady-state of the concentration of the activator ca is shown. Different colors
in the domain represent different values of ca .

Simulations using the domain aspect ratio of Fig. 4A exhibited stripe-like patterns. To
examine the pattern dependence on the ratio of horizontal length and vertical length of the
active zone, we fixed the vertical length to be 1, but changed the horizontal length suc-
cessively. The steady state patterns are shown in Fig. 4B, and we can observe the chang-
ing of stripe-like patterns (i.e., analogous to long bones and digits) to spot-like patterns
(i.e., analogous to wrist and ankle bones) when the horizontal length is increased. This
result serves as a proof-of-principle that the morphostatic system for morphogen dynam-
ics exhibits tissue-domain shape-dependence of pattern formation, as required in mod-
els for limb morphogenesis in this general framework (e.g., Newman and Frisch, 1979;
Hentschel et al., 2004).

5. Discussion

In this paper, we have investigated a mathematical model for the generation of carti-
laginous primordia of the vertebrate limb skeleton (Hentschel et al., 2004) under certain
restrictive assumptions, which correspond to the “morphostatic” limit according to the
classification by Salazar-Ciudad et al. (2003). Although the full model includes extra-
cellular matrix deposition and cell rearrangement via haptotaxis, the reduced model only
describes the dynamics of the activating and inhibitory morphogens that control the initi-
ation of chondrogenesis. We were mainly interested in the parameter ranges for which the
appearance of (chemical) Turing patterns is possible, thereby breaking the symmetry of
the spatially homogeneous steady state. The question of the (temporal) stability of these
patterns and how these chemical patterns give rise to, and then interact with, spatial pat-
terns in the cell densities were not dealt with; however, certain hypotheses on the role of
the extracellular matrix molecule fibronectin in stabilizing spatial patterns have been put
forward in Hentschel et al. (2004) and Alber et al. (2005b).

We assumed that cell differentiation is faster than the changes in the overall cell den-
sity, following the arguments in Hentschel et al. (2004). An additional assumption was
that the spatial variations in the densities of the various cell types involved are small and
can be replaced by a constant density for the analysis of the evolution of the morphogen
concentrations. Note that in this case, no a priori assumption regarding the relative mag-
nitudes of the time scales for the evolution of the morphogen concentration and the cell
densities is made. We were able to find a broad set of parameters for which the necessary
conditions for the Turing instability are fulfilled. Our analysis considers a broad class
of models characterized by different coefficients in Michaelis–Menten kinetics. Our re-
sults suggest that the precise choice of these coefficients does not influence the possibility
of the Turing instability. In this sense, our considerations are robust. We also proved a
nonnegativity result which asserts that the activator and inhibitor-concentrations cannot
vanish in our model.
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For our system to exhibit a Turing-type instability in the morphostatic limit, several
constraints on morphogen dynamics must be met. In particular, our results indicate the
following qualitative predictions:

(1) The maximum production rate of the inhibitor by R2 cells (i.e., cells bearing FGF
receptor 2) exceeds their rate of production of the activator TGF-β .

(2) The threshold levels of local TGF-β concentration that elicit maximal production
rates by R2 cells of TGF-β , and of inhibitor, must be of roughly the same order of mag-
nitude.

Knowledge of the cellular biochemistry and the resolution of current techniques do
not permit the relevant measurements to be made either in the limb bud or even in mi-
cromass cultures at present. These predictions, however, are testable consequences of our
assumptions, both in in vivo and in vitro living systems (at least in principle), and in
silico, where the biologically and analytically authentic morphogen system represented
by (9)–(10) can be employed in hybrid discrete-continuum simulations in lieu of the ad
hoc morphogen systems used previously (Izaguirre et al., 2004; Chaturvedi et al., 2005;
Cickovski et al., 2005).

The morphostatic limit for the system (1)–(8) was introduced to make identification
of the Turing space for this system analytically tractable, but it may also represent a re-
ality of development for most or some tetrapod embryos. The establishment of the limb
skeletal pattern in chicken embryos occurs over 4 days, while the same process in human
embryos occurs over 4 weeks. Since the spatial scales of limb pattern formation in the
two species are similar, one or more of the dynamical processes involved—morphogen
evolution, cell differentiation, cell mobility—must differ substantially between the differ-
ent species. This strongly suggests that the parameters we have considered here and in
Hentschel et al. (2004) have been subject to natural selection. Transformation of an inher-
ently morphodynamic system into a morphostatic one by, for example, slowing the rate
of cell movement, is a plausible evolutionary scenario for evolutionary changes in limb
development and in other systems with similar properties.

What might be the selective advantage of a developmental mechanism achieving a
morphostatic status? There is good evidence that the limb’s morphology was more in-
consistent at earlier stages of its evolution than at present. Ancient tetrapod limbs, for
example, often exhibited great variability in digit number within the same group, with
these numbers sometimes exceeding seven or eight (Coates and Clack, 1990). Signif-
icantly, this variable polydactylous condition can be achieved in the mouse by knock-
ing out Shh and certain of its modulators (Litingtung et al., 2002). The atypical form
of the limb skeleton of Tiktaalik, the recently discovered transitional form between
lobe-finned fish and tetrapods, suggests that at earlier evolutionary stages, limbs were
even less constrained (Daeschler et al., 2006; Shubin et al., 2006). Eventually, how-
ever, the limb settled into a stereotypical plan, typically pentadactylous (five fingers and
toes), but even when not, stable within phylogenetic groups (Hinchliffe, 2002). This
suggests that an effect of evolution was to stabilize generation of a standard pheno-
type, a phenomenon known as developmental canalization (Waddington, 1942). Salazar-
Ciudad and coworkers (Salazar-Ciudad et al., 2003; Salazar-Ciudad and Jernvall, 2005;
Salazar-Ciudad, 2006) have proposed that morphodynamic mechanisms, in which change
in cell state and cell rearrangement occur simultaneously, are more prolific morphologi-
cally (i.e., “evolvable”) when their constituent genes are mutated than are morphostatic
mechanisms, in which these processes occur in a sequential fashion.
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Separation of the time-scale of cell movement from that of morphogen pattern dy-
namics is, therefore, one strategy by which natural selection can achieve developmental
and evolutionary robustness (Wagner, 2005). The question remains, however, of whether
reaction–diffusion mechanisms per se, which are inherently sensitive to parameter varia-
tion, would persist as important components of developmental processes over long evo-
lutionary periods. For developmental processes in which the detailed morphological out-
come is not under strict control, such as branching morphogenesis in the lung (Miura
and Shiota, 2002; Hartmann and Miura, 2006) or exocrine glands (Nelson et al., 2006),
reaction–diffusion processes are sufficient to generate functional patterns. The functions
of the vertebrate limb (running, grasping, swimming, flight) in different species, however,
is tied to precise morphologies. The structure of the limb has, therefore, been under a
high degree of selection pressure over the course of evolution. While the limb skeletal
pattern may have had it origins in self-organizing reaction–diffusion processes, eventu-
ally it would come to be generated by more precise mechanisms such as those utilizing
additional molecular gradients and reliable feed-forward hierarchical control networks
(Newman, 2003; Salazar-Ciudad et al., 2001). In work in progress, therefore, we have
been considering, in the context of a hybrid continuum-discrete simulation framework,
models in which the reaction–diffusion system (9)–(10) is subject to imposed gradients
(representing Shh, Hox proteins, etc.) which we presume to exert a stabilizing control
on the production of the system’s core morphogens and extracellular matrix molecules.
Because this simple reaction–diffusion system has been derived in an analytically rigor-
ous fashion from a more complex system incorporating a large portion of the presumed
core mechanism of limb development, it is reasonable to expect that simulations utiliz-
ing it will represent developmentally authentic phenomena within the constraints of the
morphostatic assumption.
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Appendix A: Sufficient conditions for Turing instability

Let us consider spatially homogeneous steady state (c∗
a, c

∗
i ) of the system (9)–(10). First,

notice that the first component of the homogeneous steady state can be computed from
the equation:

J 1
a + Ja(ca)K(ca) − Ji(ca)K(ca) = 0. (A.1)

Let A denote the Jacobian of the reaction terms in (9)–(10), taken at the equilibrium
(c∗

a, c
∗
i ). That is, denoting F(ca, ci) = U(ca)− kacaci and G(ca, ci) = V (ca)− kacaci , we

have

A =
(

F,ca (c
∗
a, c

∗
i ) F,ci

(c∗
a, c

∗
i )

G,ca (c
∗
a, c

∗
i ) G,ci

(c∗
a, c

∗
i )

)
. (A.2)
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We need to determine for which parameter ranges the following three conditions are sat-
isfied (see, e.g., Murray, 1993):

1. Tr A = A11 + A22 < 0.
2. det A > 0
3. A11 > 0.

For three or more chemicals, conditions for existence of the Turing instability are more
complicated (see Satnoianu et al., 2000; Satnoianu and van den Driessche, 2005, and also
Cross, 1978).

If conditions (1), (2) and (3) are satisfied then for large enough Di/Da , the system (9)–
(10) undergoes a Turing instability. In order to find the appropriate parameter ranges for
our model, we first write down the specific form of these conditions in our case.

Let Ja be given by (14) with n = 1 and ka = const, Ji = Ji(ca, ci). Then, at a positive
constant steady state of the system (9)–(10) the following holds:

(i) The condition A11 > 0 is equivalent to

α,ca

α
ca∗

(
J 1

a + JaK
)
(ca∗) + (KJa),ca (ca∗)ca∗ − (KJa)(ca∗) − J 1

a > 0. (A.3)

(ii) The condition det A > 0 is equivalent to the condition

K ′(Ja − Ji) + K(J ′
a − J ′

i ) < 0 (A.4)

at ca = ca∗.
(iii) The condition Tr A < 0 is satisfied for large enough ka .

These statements follow from straightforward calculations.

Appendix B: Proof of the statements (i), (ii), (iii) of 3.3

B.1 Proof of (i)

First, note that for δ = 0, Eq. (A.1) becomes

r − wz/(1 + z) + z2/(1 + z)2 = 0, (B.1)

where z, r and w are defined in (19).
For y = z/(1 + z) we obtain the equation

r − wy + y2 = 0,

hence

y = 1

2

(
w −

√
w2 − 4r

)
. (B.2)

The fact that above we have chosen the branch with the minus sign is dictated by (A.4),
which implies the inequality y < w/2.
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Below, we will prove, that for δ = 0, the condition (A.3) cannot be satisfied. If (A.3)
held, then we would have the inequality

(KJa),z(z)z − (KJa)(z) > J 1
a (B.3)

for z = ca∗. (Note that α′ is negative.) By means of Remark 2 and the above denotations,
this condition can be written as

y2 1 − z

1 + z
> r.

To see that this condition cannot be fulfilled, let us note that for a given w, y changes
from w/2 for r = w2/4 to 0 for r = 0. Moreover, the value of y2/r changes from 1 for
r = w2/4 to r/w2 ↘ 0 as r → 0. This decrease is monotonic as it is straightforward to see
that the derivative of y2/r is nonnegative. Now, we may perturb our problem by changing
the value δ/s away from 0 and the condition (A.3) (which was replaced by (B.3) for δ = 0)
will not be satisfied. The perturbed equation for z has the form

r − wz/(1 + z)
(
z/(δ/s)

)q
/
[
1 + (

z/(δ/s)
)q] − z2/(1 + z)2 = 0. (B.4)

Expressing z by y we can write it in the form:

r − wy
(
z/(δ/s)

)q
/
[
1 + (

z/(δ/s)
)q] + y2 = 0, (B.5)

where z should be written within the terms of y. It is obvious that the above equation
either has a solution (originating from the initial one), which depend continuously on
the parameters or the initial solution ceases to exist. If the considered positive branch
z(δ) exists (and is continuous with respect to δ ≥ 0, y2(δ)/r have the same properties
as before, which means that the condition (A.3) cannot be fulfilled. This completes the
proof.

B.2 Proof of (ii)

We first treat the most important case n = q = 1 and then indicate how the proof general-
izes to any n = q ≥ 1. In the case at hand, the Eq. (A.1) for the constant steady state takes
the following form:

−r + y2(w − 1) = 0, (B.6)

where again y = z/(1 + z) and z = ca/s. This gives y = √
r/(w − 1) and hence

z =
√

r
w−1

1 −
√

r
w−1

.

We now need to check the condition A11 > 0, i.e., condition (A.3). In fact, we show that
this condition can be satisfied if r is taken sufficiently small (with respect to (w − 1)).
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Indeed, one computes that this condition is equivalent to the inequality

r

w − 1

(
1 − z

1 + z
− z

(1 + z)2
LKmax

(
1 + LK(z)

)−1
)

> r

(
1 + z

(1 + z)2
LKmax

(
1 + LK(z)

)−1
)

. (B.7)

Now fix some w with 1 < w < 2. If we let r → 0, then z → 0 and K(z) → 0. Thus, for
small enough r > 0, the condition (B.7) is satisfied.

It remains to be checked if the condition detA > 0 can be satisfied, i.e. (A.4) can be
satisfied. The corresponding condition can be written as

φ(z)φ′(z)(Ja,max − Ji,max) < 0, (B.8)

where φ(z) = (z/(1 + z))2. Note that φ(z)φ′(z) > 0, and so the condition (B.8) is
equivalent to Ja,max < Ji,max, which in turn is equivalent to w > 1. (Recall that w =
Ji,max/Ja,max.) As we assumed that indeed w > 1, this condition is always satisfied.

Having thus shown the validity of the statement for the case n = q = 1, let us note that
this simple case may be generalized to any n = q ≥ 1. First of all, let us note that if we
define

y = zn/
(
1 + zn

)
,

then we can still use (B.6) to calculate the positive steady state of the system. Having its
positive solution y, we obtain

zn = y/(1 − y), z = (
y/(1 − y)

)1/n
.

Remark 2. Let φn(x, s) = (x/s)2n/[1 + (x/s)n]2. Then the difference φ′(x, s)x − φ(x, s)

is equal to y2(2n − 1 − zn)/(1 + zn), where z = (x/s).

The inequality (A.3) can be written in the form

y2
((

2n − 1 − zn
)
/
(
1 + zn

) − zn/
(
1 + zn

)2
nLKmax/

[
1 + LK(z)

])

− r
(
1 + zn/

(
1 + zn

)2
nLKmax/

[
1 + LK(z)

])
> 0, (B.9)

where K(z) = Kmaxy.
Finally, the inequality (B.8) changes to

φn(z)φ
′
n(z)(Ja,max − Ji,max) < 0, (B.10)

where we denoted φn(z) = φn(x, s).
Based on the above remarks, we can easily repeat the above considerations.
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B.3 Proof of (iii)

The equation for the constant steady state (B.6) takes the form

−r + y2
(
wψ(z, a) − 1

) = 0, (B.11)

where

ψ(z, a) = a(1 + z)

1 + az
, y = z/(1 + z), a = s

δ
.

This is in turn equivalent to the equation

z3 + b2(a, r)z2 + b1(a, r)z + b0(a, r) = 0, (B.12)

where the coefficients of the above polynomial are given by

b2(a, r) = aw − 1 − r(1 + 2a)

a(w − 1 − r)
, b1(a, r) = − r(a + 2))

a(w − 1 − r)
,

b0(a, r) = − r

a(w − 1 − r)
.

Note that if a and r are small enough, then all the coefficients b0, b1 and b2 are negative.
Denote by z1(r), z2(r) and z3(r) the three roots of (B.12) for fixed w > 1, a � 1. At
r = 0, we have z1(0) = (1 − aw)/(a(w − 1)), z2(0) = z3(0) = 0. It is not hard to see that
for r > 0, the branches z2(r) and z3(r) cannot be nonnegative real numbers. Indeed, we
have

z3
i = −b2(r)z

2
i − b1(r)zi − b0(r)

with −b2(0) > 0 and −bk(r) ≥ 0 (k = 0,1,2). One sees that for zi(r) → 0, one cannot
have zi(r) ≥ 0.

Thus, the only valid branch for small r > 0 is z1(r) with z1(0) = (1−aw)/(a(w−1)).
As computed before in (B.7), the condition A11 < 0 in Appendix A is equivalent to

(
z

1 + z

)2(1 − z

1 + z
− z

(1 + z)2
LKmax

(
1 + LK(z)

)−1
)

> r

(
1 + z

(1 + z)2
LKmax

(
1 + LK(z)

)−1
)

. (B.13)

Note that z1(0) → +∞ as a → 0, and so the left-hand side of the above expression is
negative for small a > 0, whereas the right-hand side is always positive. It follows that
we cannot have a Turing bifurcation at r = 0 for small enough a > 0. By continuity, this
proves the claim.
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